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Abstract

ATP-driven microtubule-kinesin bundles can self-assemble into two-dimensional active liquid
crystals (ALCs) that exhibit a rich creation and annihilation dynamics of topological defects,
reminiscent of particle-pair production processes in quantum systems. This recent discovery has
sparked considerable interest but a quantitative theoretical description is still lacking. We present and
validate a minimal continuum theory for this new class of active matter systems by generalizing the
classical Landau—de Gennes free-energy to account for the experimentally observed spontaneous
buckling of motor-driven extensile microtubule bundles. The resulting model agrees with recently
published data and predicts a regime of antipolar order. Our analysis implies that ALCs are governed
by the same generic ordering principles that determine the non-equilibrium dynamics of dense
bacterial suspensions and elastic bilayer materials. Moreover, the theory manifests an energetic
analogy with strongly interacting quantum gases. Generally, our results suggest that complex
nonequilibrium pattern-formation phenomena might be predictable from a few fundamental
symmetry-breaking and scale-selection principles.

Active materials [1] assembled from intracellular components, such as DNA [2], microtubules and motor
proteins [3—5] promise innovative biotechnological applications, from microscale transport and medical devices
[2] to artificial tissues [ 1] and programmable soft materials [6—8]. Beyond their practical value, these systems
challenge theorists to generalize equilibrium statistical mechanics to far-from-equilibrium regimes [9-26].
Recent experimental advances in the self-assembly and manipulation of colloids with DNA-mediated
interactions [27-29] have stimulated theoretical analysis that may eventually help clarify the physical principles
underlying self-replication [30-32] and evolution in viruses [33—35] and other basic biological systems. Yet,
despite some partial progress [10, 18, 19, 36—39], our conceptual understanding of active materials, and living
matter in general, remains far from complete. We do not know whether, or under which conditions,
‘universality’ ideas [40] that have proved powerful in the description of equilibrium systems can be generalized
to describe collective dynamics of active matter not just qualitatively but also quantitatively. This deficit may be
ascribed to the fact that mathematical models have been successfully tested against experiments in only a few
instances [3, 4, 15,41-43].

Recently discovered 2D active liquid crystal (ALC) analogs [5, 44—47] comprise an important class of non-
equilibrium systems that allows further tests of general theoretical concepts [40] and specific models. ALCs are
assemblies of rod-like particles that exhibit non-thermal collective excitations due to steady external [44, 45] or
internal [5, 47] energy input. At high concentrations, ALCs form an active nematic phase characterized by
dynamic creation and annihilation of topological defects [5, 44, 47], reminiscent of spontaneous particle-pair
production in quantum systems. This phenomenon was demonstrated recently [5, 47, 48] for ATP-driven
microtubule-kinesin bundles trapped in flat and curved interfaces. Moreover, these experiments [48] revealed
an unexpected nematic ordering of topological defects which is unaccounted for in current theoretical models.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) Image sequence showing spontaneous buckling of a microtubule bundle (dashed) caused by extensile ATP-driven motor
activity, adapted with permission from figure 1(c) in [5]. Time interval 11.5 s, scale bar 15 pm. For a passive or contractile bundle, one
would expect straightening instead of bending, approximately corresponding to a time-reversal of the depicted sequence.

(b) Schematic of the experimental setup reported in [5, 48], not drawn to scale. A thin oil film (thickness ~3 pm) separates a2D ALC

layer (~0.2-1.0 um) at the oil-water interface from a solid glass cover. Liquid can be exchanged between the ALC layer and bulk fluid,
resulting in compressible 2D interfacial flow that is strongly damped by the nearby no-slip glass boundary and the viscous oil layer.

(c) Extensile 2D dipole flow in the interface as predicted by the overdamped closure condition (4) for D > 0and Q = (), 0; 0, —\)

with A = exp(—r?). The central horizontal bar indicates the unit director axis, and background colors the nematic order

parameter S ~ A.

Understanding the emergence of such topological super-structures is crucial for the development and control of
new materials, as recently demonstrated for colloidal liquid crystals [49-51].

We here develop and test a closed continuum theory for dense ALCs by generalizing the higher-order scalar
and vector theories of soft elastic materials [52] and bacterial fluids [15, 41] to matrix-valued fields. Specifically,
we propose a modification of the commonly adopted Landau—de Gennes (LdG) free energy to account for the
inherently different microscopic buckling behaviors of passive and active LCs [5]. While bending is energetically
unfavorable in passive LCs and hence penalized by the LdG energy functional, kinesin-driven ALCs buckle
spontaneously even at low concentrations due to the extensile motor action (figure 1(a)). This experimental
observation [5] implies that the classical LdG framework is, by construction, ill-suited to describe experiments in
which microtubule bundles are sheared relative to each other by motor proteins [5, 47, 48]. The inclusion of
active bending effects in the LdG functional yields a tensor version of the Swift-Hohenberg theory [53] of pattern
formation. The resulting minimal model has only two dimensionless parameters, thus allowing a detailed
comparison with recent experimental data [5, 48].

In addition to the traditional Q-tensor formulation, we present an equivalent complex scalar field
representation [14, 54] that manifests an analogy with a generalized Gross—Pitaevskii theory [55, 56] of strongly
coupled many-body quantum systems [57—-60]. In the case of normal dispersion, the celebrated LC-
superconductor correspondence [54, 61] has helped elucidate profound parallels between the smectic phase in
passive LCs and the Abrikosov vortex lattices in type-II superconductors [62, 63]. The results below indicate that
asimilar analogy may exist between ALCs and Bose—FEinstein/Fermi condensates with double-well dispersion
[58—60], suggesting that ALCs could offer insights into the dynamics of these quantum systems and vice versa.

Results

Experimental conditions

Recent experiments [5, 48] show that ATP-driven microtubule-kinesin bundles can self-assemble into a dense
quasi-2D ALC layer at a surfactant-supported oil-water interface parallel to a planar solid

boundary (figure 1(b)). This ‘wet’ ALC was found to exhibit local nematic alignment of bundles, persistent
annihilation and creation dynamics of topological defects [5], and remarkable nematic order of the defect
orientations in thin layers [48]. Although a large number of unknown parameters has prevented detailed
quantitative comparisons between theory and experiment, several recently proposed multi-order-parameter
models of 2D ALC systems [ 14, 20, 64, 65] were able to reproduce qualitatively selected aspects of these
observations, such as defect-pair creation and separation [65]. Despite providing some important insights,
traditional models often do not account for three relevant details of the experiments [5, 48]. First, those models
typically assume divergence-free 2D fluid flow within the ALC layer, which is a valid approximation for isolated
free-standing film experiments [66] but neglects fluid exchange between the 2D interface and bulk in the ALC
experiments (figure 1(b)). Indeed, the surfactant-stabilized interface causes the microtubule-kinesin bundles to
assemble into a quasi-2D layer, but places no such constraint on the fluid. As is known for classical turbulence
[67, 68], small-scale energy input can trigger turbulent upward cascades in incompressible 2D flow. Thus,
topological defect dynamics in the current standard models may be dominated by artificially enhanced
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Figure 2. Phase diagram obtained from simulations of equation (8) for one particular set of random initial conditions showing the
emergence of turbulent nematic states for supercritical active self-advection. (a) We observe convergence to defect-free stripes (blue,
panel (c), Movie S3), long-lived static and oscillatory defect lattice solutions (green, panel (d), Movie S4), oscillatory defect creation
and annihilation events (black, Movies S6 and S7), and chaotic dynamics (red, panel (b), Movie S1). The white line indicates the

analytical estimate D, = 2(—~, + , ’yi + 2) for the transitions between ordered and chaotic states. (b)—(d) Examples of the states

identified in panel (a) with — %—defects (black) and + %—defects (white). Panel (d) highlights the antipolar ordering of + %—defect
orientations (red bars); see also figure 3 and Movie S5 for a realization of this state in a ~ 10 larger simulation domain.

hydrodynamic mixing due to a simplifying 2D incompressibility assumption that is unlikely to hold under
realistic experimental conditions [5, 48]. Second, a relevant yet previously ignored effect is damping from the
nearby boundaries, which may promote topological defect ordering. Third, as already mentioned above, the
commonly adopted standard LdG free-energy functional does not account for motor-driven spontaneous
buckling [5] of microtubule bundles (figure 1(a)), which is one of the key differences between passive and active
LCs (Z. Dogic, private communication). To overcome such limitations and achieve a quantitative description of
the experiments [5, 48], we next construct a closed continuum theory for ALCs described by a nematic tensor
field Q (¢, r). The theory accounts for the different buckling behaviors of passive and active LCs and builds on a
self-consistent hydrodynamic closure condition.

Theory

Traditional multi-field models [64, 65] aim to describe the 2D nematic phase of a dense ALC suspension by
coupling the filament concentration ¢ (¢, r) and the nematic order tensor Q (¢, r) to an incompressible 2D flow
field v (t, r) that satisfies V - v = 0 in the interface plane r = (x, y). The nematic order parameter S(¢, r) is
proportional to the larger eigenvalue of Q, and the filaments are oriented along the corresponding eigenvector,
or director n (¢, r). To construct an alternative closed-form theory for the symmetric traceless2 x 2-tensor
field Q, we start from the generic transport law

0,Q+ V- Q) — k[Q w] = —i—g, (1)

where w = [Vv — (Vv)']/2 s the vorticity tensor, [A, B] = AB — BA the commutator of two matrices and
FlQl = f d?r F an effective free energy. Focussing on dense suspensions as realized in the experiments [5, 48],
we neglect fluctuations in the microtubule concentration, V¢ = 0. A derivation of the advection term V - (vQ)
from the probability conservation laws underlying generic advection-diffusion models is outlined in the
supplementary information. Itis important, however, that V - (vQ) = v - VQwhen V - v = 0, whichis
typically the case when fluid can enter and leave the interface. Combining LdG theory [69] with Swift—
Hohenberg theory [53], we consider the effective non-equilibrium free-energy density (supplementary
information)
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with a, b > 0 for the nematic phase. Assuming ~y, can have either sign, ultraviolet stability requires , > 0. For
7, < 0, Fpenalizes bending and buckling, as is appropriate for passive LCs and possibly ‘dry’ shaken nematics
[44, 45], forcing the system dynamics towards a homogeneous nematic ground-state manifold. By contrast,
motor-induced spontaneous buckling [5] (figure 1(a)) of kinesin-driven ALCs demands +, > 0,and
consequently patterns of characteristic wavelength A ~ /~,/~, become energetically favorable, as shown
below.

The requirement 7, > 0 for ALCs has an intrinsically microscopic origin, as the ALC assembly consists of
microtubules that grow against each other and spontaneously buckle due to the motor-induced extensile shear
dynamics of adjacent bundles (figure 1(a)). To explain this important point in more detail, let us recall that
passive LCs are modeled using 7, < 0, as the corresponding term in the free energy penalizes variations in Qand
thus inhibits spatial inhomogeneities at damping rate 7, k* < 0 in Fourier space. Microscopically, the alignment
dynamics of two rod-like passive LC molecules roughly corresponds to a time-reversal of the ALC pair-
interaction image sequence in figure 1(a), implying that a corresponding ALC system would develop buckling
instabilities at growth rate v, k? > 0. Additional empirical support for this theoretical picture comes from a
comparison of the experimentally observed length scales in ALC systems: the microtubule-kinesin bundles
realized in the ALC experiments [5, 48] are approximately 10-30 pm inlength (figure 1(b) in [5]), which is on
the same scale as both the spontaneous buckling wavelength (figures 1(c) and (d) in [5], and figure 1(a)) and the
typical separation distance between defects (bottom panels of figure 3(d) in [5], reproduced in figure 4(a) below).
That s, there exists no substantial scale separation between the buckling microscopic constituents and emergent
ALC dynamics.

Similar buckling phenomena are generically observed in many systems that are subjected to external or
internal stresses, for example in elastic films and sheets [52, 70] and in geometrically confined cellular networks
[71,72]. The ALCs experience an effective compressive stress due to the extensile ‘growth’ of the filament pairs in
a confined geometry, which arises from their motor-induced shear dynamics. Application of such a compressive
stress leads to buckling of the network’s constituents [71, 72]. It has been shown that out-of-plane buckling of an
elastic sheet due to an effective compressive stress may be quantitatively modeled by a Swift-Hohenberg-type
equation with v, > 0 in the corresponding free energy [52]. We expect the same to be true for the in-plane
buckling of microtubules confined to a planar interface, and thus analyze here an effective theory that
incorporates this spontaneous motor-induced buckling phenomenologically through ~, > 0.

Hydrodynamic closure
To obtain a closed Q-model, we relate the 2D flow field v to Q through the linearly damped Stokes equation
[73,74]

Vv 4+ ww=—-(V-Q, (3)

where 7 is the viscosity and the rhs represents active stresses [ 10, 64] with ¢ > 0 for extensile ALCs (figure 1(c)).
A pressure term does not appear in equation (3) because the interfacial flow is not assumed to be incompressible
and concentration fluctuations are neglected. The v-term in the force balance (3) has been used to model
interfacial damping in other contexts, such as surfactant membranes on a solid substrate [73], and accounts for
friction from the nearby no-slip boundary in the Hele—Shaw [74] approximation (figure 1(b)). In the
overdamped regime vA?/1n >> 1, we deduce from equation (3) the closure condition

v=-DV-Q,  D=(/v. (4

Equation (4) is conceptually similar to closure conditions proposed previously for active polar films [75].
Importantly, equation (4) predicts divergent interfacial flow, V - v = 0, and hence fluid transport perpend-
icular to the interface wherever VV : Q = 0.Inserting (4) into (1) yields a closed Q-theory in which periodic
director patterns corresponding to local minima of the free energy F can become mixed by self-generated
interfacial flow.

Complex representation and ALC-quantum analogy

The traditional characterization of 2D nematic order in terms of the symmetric traceless 2 x 2 matrix field

Q = (A, s p, —A)isredundant, for only two real scalar fields A (¢, r) and (¢, r) are needed to specify the
nematic state at each position r = (x, y). To obtain an irreducible representation [14, 54] we define the complex
position coordinate z = x + iy, velocity field v (¢, z) = u + iw and complex order parameter

Y (t, z2) = A + i, suchthat S = 2|¢|. In terms of the Wirtinger gradient operator 0 = %(8,C — i0,), the 2D

Laplacian takes the form V2 = 400 and the closure condition (4) reducesto v = —2D3d%). Denoting the real
and imaginary parts of an operator O by R{ O} and J{ O}, equations (1) and (2) may be equivalently expressed

4
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as
O+ Ayt = —%, )
where the self-advection operator is given by
Ay = —4D R{(O%) + (9} + 4kD i T(O%) 6)
and the free energy G[¢, )] = [dz G hasthe density
G = —alul + 2t + 720 (400 + (4300 @)

For , < 0and v, — 0, equation (7) reduces to the energy density of the Gross—Pitaevskii mean-field model
[55, 56] for weakly interacting boson gases. Historically, this limit case has been crucial [54, 61] for elucidating
the analogy between the smectic phase of passive LCs and the Abrikosov flux lattice in type-II superconductors
[62,63]. For «,, 7, > 0, equation (7) effectively describes double-well dispersion [57], as recently realized for
quasi-momenta in spin—orbit-coupled Bose—FEinstein condensates [58, 60] and Fermi gases [59]. This fact
establishes an interesting connection between dense ALCs and strongly coupled quantum systems: when self-
advection is negligible (D — 0), the fixed point configurations of equation (5) coincide with the ‘eigenstates’ of
generalized Gross—Pitaevskii models that incorporate wavelength selection.

Stability analysis

The qualitative model dynamics is not significantly altered for moderate values of x (Movies S1 and S2), so we
neglect the commutator term by setting x = 0 from now on (see supplementary information for £ > 0). To
understand the properties of equations (5) and (6) when self-advection is relevant, we perform a fixed point
analysis of the rescaled dimensionless equation (supplementary information)

Db — 4D R{(9%) + (D)D)} v — (i - W)w (DAY — (4DDY, ®)

by focussing on the uniform state 1)y = %eize, which corresponds to a nematic order parameter value S = land

homogeneous director angle @ relative to the x-axis. Considering wave-like perturbations 1) = 1y + & (t)e*"

with |¢| < 1and extensile ALCs with D > 0, one finds that 14 is unstable when -y, > 0 (supplementary
information). For subcritical self-advection, D < D. = 2(—~, + 'yi + 2), the dominant instability is driven
by modes with wavenumber |k| = \/m , suggesting the formation of stripe patterns with typical
wavelength A ~ / 871'274 / 7, . By contrast, for supercritical advection, D > D, the most unstable mode

propagates perpendicular to the director, (kx, ¢y) = (\/(2v, + D)/(47,), 0 + (7/2)), suggesting the possibi-
lity of transverse mixing.

Phase diagram

To investigate the nonlinear dynamics of equation (8), we implemented a Fourier pseudospectral algorithm with
modified Runge—Kutta time-stepping [76] (Methods) and so evolved the real and imaginary parts of ¢ (¢, z) in
time for periodic boundary conditions in space. A numerically obtained (vy,, D)-phase diagram for random
initial conditions confirms the existence of a turbulent nematic phase if active self-advection is sufficiently
strong (figures 2(a) and (b); Movie S1). Ordered configurations prevail at low activity (figures 2(a), (c) and (d);
Movies S3, S4 and S6). Although the ground-states of the free energy (2) are in general not homogeneous, the
critical curve separating the two regimes is in fair agreement with the estimate D, = 2(—~, + /’yg + 2) from
linear stability of the homogenous state (white line in figure 2(a)). For subcritical values of the advection
parameter D, we observe either defect-free ground-states or long-lived lattice-like states exhibiting ordered
defect configurations (figures 2(c) and (d)). Regarding the subsequent comparison between theory and
experiment, it is important to note that the lattices are also found in simulations with a large domain (figure 3;
Movie S5). These spatially periodic states generally exhibit antipolar long-range ordering of

+%—defects (figures 2(d); 3(a)) accompanied by vortex flow lattices (figure 3(c)). Numerical free-energy
calculations show that defect-free states (figure 2(c)) typically have slightly lower energies than the lattice states
(figure 2(d)), leaving open the possibility of a very slow decay of the latter. However, regardless of whether such
lattice states are extremely long-lived metastable or truly stable states, these simulation results confirm that anti
polar ordering of + % -defect pairs can persist over experimentally relevant time-scales.

Theory versus experiment
To test our theory systematically against existing experimental data [5, 48], we analyze defect-pair dynamics,
global defect ordering and defect statistics in the turbulent nematic phase.

5
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Normalized vorticity (a.u.)
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Figure 3. Vortex lattice states with antipolar long-range ordering of nematic defects, see also Movie S5. (a) Long-lived nematic order
parameter field with periodically aligned — %-defects (black) and + %-defects (red). (b) Line integral convolution (LIC) plot of the
corresponding director field as a proxy for microtubule-bundle patterns. () LIC plot of the corresponding fluid velocity field, color-
coded by normalized vorticity, demonstrates the formation of a vortex flow lattice. Dimensionless simulation parameters are

D = 0.25, ~, = 1.875.

Figure 4. Defect-pair creation and propagation in experiment and theory. (a) Experimentally observed dynamics of a defect pair,
spontaneously produced by buckling and subsequent fracture of filaments; adapted with permission from figure 3(d) in [5]. Scale bar
20 pom, time lapse 15 s. (b) Line integral convolution (LIC) plot of the director fields showing the spontaneous creation and

propagation of a defect-pair in a simulation of equation (8) for D= 1.5, 7, = 1. Asin the experiments, + %-defects (yellow) generally

move faster than — %—defects (light blue), see figure 7.

Spontaneous defect-pair creation and subsequent propagation, as reported in recent ALC experiments [5]
and observed in our simulations, are compared in figure 4. In the experimental system [5], a (—|— % , — %) -defect
pair is created when fracture along incipient crack regions [20] becomes energetically more favorable than
buckling. After creation, the +%—defect moves away rapidly whereas the position of the — %-defect remains
approximately fixed for up to several seconds (figure 4(a)). We note that an asymmetry in the speeds of
topological defects has also been observed in passive liquid crystals [77—79]. Our simulations of the minimal
model defined in equation (8) accurately reproduce the details of the experimentally observed dynamics
(figure 4(b); Movies S1 and S2).

Another striking and unexplained experimental observation [48] is the emergence of orientational order of

+%-defects in thin ALC layers (figure 5). Using the setup illustrated in figure 1(b), recent experiments [48]

demonstrated nematic alignment of —i—%-defects in thin ALC layers of thickness # ~ 250 nm (figure 5(a)),
whereas thicker ALC layers with & ~ 1 um showed no substantial orientational order on large scales

(figure 5(b)). To investigate whether our theory can account for these phenomena, we tracked defect positions t;
(Methods) and defect orientations d; = V - Q(r;)/|V - Q(r;)|[80] in simulations for different values of the
advection parameter D = (/v, since Brinkman-type scaling arguments suggest that D increases with the ALC
layer thickness, D o 1/v o h? with p € [1, 2]. For weakly supercritical advection, D 2 D, we find that
equation (8) predicts robust antipolar alignment of —|—%-defects (figure 5(¢)). In our simulations, this ordering
decreases as the effective mixing strength D increases (figure 5(d)), consistent with the experimental results [48]
for thicker ALC layers (figure 5(b)). Similar ordering was observed in simulations that incorporated alignment of
the nematic field near the horizontal boundaries of the simulation box (supplementary information; figure S5).
To quantify the degree of orientational order, we recorded the distances d;; between all +%—defect pairs (4, /) as
well as their relative orientation angles 6; = cos~!(d; - d)) € [0, 7]. The resulting pair-orientation
distributions p (f|r), and polar and nematic correlation functions, P (r) = (d; - d;), and

N(r) = 2((d; - d )*); — 1,are shown in figure 6, with (-), denoting an average over pairs of defects separated by

6
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Figure 5. Strong and weak antipolar ordering of + %—defects as (a), (b) observed in experiments [48] and (¢), (d) predicted by our
theory based on 2D simulations with periodic boundary conditions. Light-blue markers: — % -defects. Yellow markers: +%—defects.
Red bars: orientation of +%—defects. (a) +%—defects in thin ALC films (thickness & ~ 250 nm) show strong nematic alignment.

(b) +%-defects in thicker ALC films (h ~ 1 pm)are more disordered. (c), (d) For weak effective hydrodynamic coupling D,
simulations show antipolar ordering, which is inhibited for larger values of D. The average number of defects in the full simulation box
is approximately (c) 240 and (d) 350. Figures (a) and (b) kindly provided by DeCamp and Dogic.
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Figure 6. Increasing activity and film thickness decreases antipolar ordering in simulations. (a), (b) Maxima of the numerically
obtained local pair orientation PDFs p (6;|r) signal antipolar local ordering of + %-defects as they are separated by the typical defect-

lattice spacing. The defect distance ris specified in units of the mean nearest-neighbor distance r, between + %—defects. (c), (d) Polar P
(r) and nematic N(r) correlation functions for D = 1.5 (red) and D = 3 (blue). Increasing the effective hydrodynamic coupling D
leads to stronger mixing and hence decreases nematic order, which is corroborated by the nematic correlation length being ~40%
shorter for D = 3 than for D = 1.5 (panel (d)). This is also reflected by the diminished intensity of the maxima in panel (b) relative to
panel (a). The simulation parameters correspond to those given in figures 5(c) and (d).

adistance r. The local maxima in the orientation distribution at § = 0 and § = = signal antipolar ordering
(figure 6(a)), which is also reflected in the oscillatory behavior of the polar and nematic correlation functions
(figures 6(c) and (d)). The diminished intensity of the local maxima for larger values of D indicates that enhanced
hydrodynamic mixing reduces orientational order (figures 6(c) and (d)).
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Figure 7. Quantitative comparison of defect statistics between predictions of equation (8) and experimental data [48], using the
parameter estimation procedure described in the text. For — %—defects, both (a) speed distribution and (b) lifetime distribution agree
well. (¢) For + %—defects, experimentally measured speed values are slightly larger, as our model assumes a strongly overdamped limit.
(d) Simulations with periodic boundary conditions (Movie S8) predict a low-probability tail of large lifetimes which is not visible in

the experiment, likely due to its restricted field of view or additional noise. Dimensionless simulation parameters D = 1.75 and

v, = ltranslate into the following dimensional values: a = 0.08 sLb=032s",D=1791 /1,m2 s L v, = 1024 ;Lmz s
7 = 3.28 x 10° pum* s~!. The numbers . reflect the number of j:%—defects tracked, and the simulation domain contained ~130

defects at any given time.

Lastly, we test the theoretically predicted defect statistics against a separate experimental data set kindly
provided by DeCamp et al (private communication). Since our simulations are performed in dimensionless
units, there is freedom to choose a characteristic lengthscale I and timescale #,. To relate theory and
experiments, we determine (ly, ty) such that the joint mean speed and mean lifetime of :I:%-defects match the
experimental values 7 = 6.6 um s~'and 7 = 52.8 s. After fixing these global scales, we can compare details of
the speed and lifetime distributions (figure 7). To this end, we first locate the ‘best-fit’ simulation parameters in
the (v,, D)-parameter space explored in the phase diagram (figure 2(a)). This procedure identifies
7, = 1, D = 1.75 as the best-match parameters, although nearby parameter values and simulations with x = 1
produce fits of similar quality, corroborating the robustness of the model (figure S4). For — %-defects, we find
adequate agreement between experiment and theory for speed and lifetime probability density functions (PDFs),
as evident from figures 7(a) and (b). For +%—defects, simulation results also agree well with the experimental
measurements (figures 7(c) and (d)), but one notices two systematic differences. First, while the peak heights of
the PDFs agree within a few percent, experimentally measured speed values for + % -defects are on average
slightly larger than theoretically predicted values (figure 7(c)). Second, simulation data predict a miniscule tail-
fraction oflong-living —&—%—defects not detected in the experiment (figure 7(d)). In addition, based on the
experimental density estimate of 30 defects mm ™ * [48], we find that the defect density at any given time in the
‘best-fit’ simulation is ~2.3 x lower than in the experiments. As discussed below, such deviations can be
explained plausibly by specific model assumptions. Taken together, the above results confirm that the minimal
model defined by equation (8) provides a satisfactory qualitative and quantitative description of the main
experimental results [5, 48].

Discussion

Pattern-formation mechanism

Equations (2) and (7) epitomize the idea of ‘universality’ in spatio-temporal pattern formation, as known from
Swift-Hohenberg-type scalar field theories [53, 81]. The free-energy expressions contain the leading-order
terms of generic series expansions in both order-parameter space and Fourier space, consistent with spatial and
nematic symmetries. When considering passive systems with a preference for homogenization (7, < 0), it
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usually suffices to keep only the quadratic gradient terms. By contrast, for pattern forming systems, the
coefficient in front of the lowest-order gradient contribution can change sign [52, 53], and one must include
higher-order derivatives to ensure stability. We hypothesize that the sign change of -, is directly related to the
motor-induced buckling of microtubule bundles (figure 1(a)), an effect that is not captured by the standard LdG
free-energy for passive liquid crystals. In a few select cases, expressions of the form (2) and (7) can be
systematically derived [52, 53, 82]. Generally, one can regard the free-energy expansion (7) as an effective field
theory whose phenomenological parameters can be determined from experiments. This approach has proved
successful for dense bacterial suspensions [15, 41] and now also for ALCs, indeed suggesting some universality in
the formation and dynamics of topological defects in active systems.

Nematic defect order

Although (v,, D) are varied as independent effective parameters in the simulations, they are likely coupled
through underlying physical and chemical parameters. For example, it is plausible that a change in ATP-
concentration or film thickness would affect both ~, and D. The parameter D can also be interpreted as an
effective Reynolds number. In our numerical exploration of the (v,, D)-parameter space, we observe for
subcritical advection D either long-lived lattice-like states exhibiting nematically aligned —&-%-defects or defect-
free ground-states (figures 2 and 3; Movies S3, S4, S5, S6 and S7). Ordered defect configurations correspond to
local minima or saddles in the free-energy landscape and have only slightly higher energy than defect-free states
(figure 2(c)). When the activity ( is sufficiently large that advection is marginally supercritical, D 2 D,, chaotic
system trajectories spend a considerable time in the vicinity of these metastable lattice states, which provides a
physical basis for the orientational order of defects in thin ALC films [48]. For D >> D, the ALC system can
access a wider range of high-energy states, leading to increased disorder in the defect dynamics. Although the
strongly turbulent regime D > D, requires high time-resolution and is thus difficult to realize in long-time
simulations, the inhibition of nematic defect order at larger values of D is evident from the reduced peak heights
in figures 6(c) and (d).

Defect statistics

The systematic speed deficit in figure 7(c) likely reflects the overdamped closure condition (4), which suppresses
the propagation of hydrodynamic excitations. Since flow in a newly created defect pair generally points from the
—% tothe + % -defect, the minimal model (8) can be expected to underestimate the speeds of +%-defects. This
effect could be explored in future experiments through a controlled variation of the thickness and viscosity of the
oil film (figure 1(b)). The low-probability tail of long-living +%—defects in the simulation data (figure 7(d)) may
be due to the fact that they can be tracked indefinitely in the simulations but are likely to leave the finite field of
view in the experiments. In the future, the minimal theory presented here should be extended systematically by
adding physically permissible extra terms [83] to the free-energy, explicitly simulating the full hydrodynamics in
equation (3), or incorporating additional terms into equation (1) that account for the interaction between the
nematic field and the induced flow [65, 83].

Future extensions

The minimal model formulated in equations (1) and (2) can be systematically extended to improve further the
quantitative agreement between experiment and theory. For instance, one may append to the right-hand side of
(1) an additional fourth-order linear term of the form (VV)* [V - (V - Q)] [84], O denoting the symmetric
traceless part of the operator . Such a term only affects the high-wavenumber damping at order k* and thus is
not expected to alter significantly the results obtained here. We also note that extra terms coupling the nematic
field to the induced flow may be added to equation (1), an example being SE, where E = (1/2)[Vv + (Vv) ]is
the symmetrized strain rate tensor [25, 65]. Our above analysis neglected such secondary hydrodynamic effects
in the interest of constructing a minimal mathematical theory capable of capturing key experimental
observations. Moreover, this simplification may be justified on the physical basis that steric interactions and
motor-induced buckling are expected to dominate over flow-alignment effects at high microtubule densities’.
The effect of microtubule bending may be enhanced by appending a hydrodynamic interaction term
proportional to E* [25], since the closure condition v = —DV - Q implies that E* = —(D/2) AQ, which
augments the bending term —~, AQ in equation (2). However, the scale separation between the experimentally
observed filament buckling wavelength and the flow structures in the isotropic phase at low microtubule
concentrations (see figure 1(d) in [5]) suggests that such hydrodynamic effects play a secondary role. A natural
next step would be to derive systematically the bending term from a microscopic model of motors and filaments
asintroduced in [20]. Finally, it will be worthwhile to attempt constructing a fully 3D theory for the ALCs and

In active nematics of low to intermediate density, concentration fluctuations can trigger additional instabilities [85].
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fluid and subsequently project on the quasi-2D interface, although additional assumptions are required then to
obtain a closed 2D system of equations.

Conclusions

Recent experimental and theoretical studies showed that fourth-order PDE models for scalar and vector fields
provide an accurate quantitative description of surface-pattern formation in soft elastic materials [52] and
orientational order in dense bacterial fluids [15, 41]. Here, we have generalized these ideas to matrix-valued
fields describing soft active nematics. The above analysis demonstrates that a generic fourth-order Q-tensor
model can shed light on experimental observations in 2D ALCs [48], including the emergence of orientational
order of topological defects. Physically, the higher-order generalization (2) becomes necessary because the
commonly adopted LdG free-energy, which was designed to describe passive liquid crystals, does not account
for the experimentally observed spontaneous buckling of motor-driven ALCs [5]. More generally, the fact that
three vastly different soft matter systems can be treated quantitatively in terms of structurally similar higher-
order PDEs [15, 41, 52] promises a unified mathematical framework for the description of pattern formation
processes in a broad class of complex materials. In addition, the free-energy analogy [54] between dense ALCs
and generalized Gross—Pitaevskii models suggests that the self-organization principles [40] of mesoscopic active
matter and microscopic quantum systems [57—60] could be more similar than previously thought.

Methods

Numerical solver and defect tracking

To simulate equation (8), we implemented a numerical algorithm that evolves the real and imaginary parts

A(t, r)and p (¢, r) of the complex order parameter ¢ in time for periodic boundary conditions in space. The
algorithm solves equation (8) pseudospectrally in space using Ny = 256 or N,y = 512 lattice points in each
direction and a simulation box of size L = 67 (figures 2 and 4) or L = 187 (figures 3, 5-7). Spectral analysis shows
that Ny = 256 is generally sufficient to resolve the fine-structure of the numerical solutions (supplementary
figure S6). The algorithm steps forward in time using a modified exponential time-differencing fourth-order
Runge-Kutta method [76] with time step At < 2710, Simulations were initialized with either a single defect pair
or random field configurations { A (0, r), (0, r)}. Defects are located at the intersections of the zero-contours
of A and i, their positions tracked by implementing James Munkres’ variant of the Hungarian assignment
algorithm [86] (supplementary information).
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