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Abstract
ATP-drivenmicrotubule-kinesin bundles can self-assemble into two-dimensional active liquid
crystals (ALCs) that exhibit a rich creation and annihilation dynamics of topological defects,
reminiscent of particle-pair production processes in quantum systems. This recent discovery has
sparked considerable interest but a quantitative theoretical description is still lacking.We present and
validate aminimal continuum theory for this new class of activematter systems by generalizing the
classical Landau–deGennes free-energy to account for the experimentally observed spontaneous
buckling ofmotor-driven extensilemicrotubule bundles. The resultingmodel agrees with recently
published data and predicts a regime of antipolar order. Our analysis implies that ALCs are governed
by the same generic ordering principles that determine the non-equilibriumdynamics of dense
bacterial suspensions and elastic bilayermaterials.Moreover, the theorymanifests an energetic
analogywith strongly interacting quantum gases. Generally, our results suggest that complex
nonequilibriumpattern-formation phenomenamight be predictable from a few fundamental
symmetry-breaking and scale-selection principles.

Activematerials [1] assembled from intracellular components, such asDNA [2], microtubules andmotor
proteins [3–5] promise innovative biotechnological applications, frommicroscale transport andmedical devices
[2] to artificial tissues [1] and programmable softmaterials [6–8]. Beyond their practical value, these systems
challenge theorists to generalize equilibrium statisticalmechanics to far-from-equilibrium regimes [9–26].
Recent experimental advances in the self-assembly andmanipulation of colloids withDNA-mediated
interactions [27–29] have stimulated theoretical analysis thatmay eventually help clarify the physical principles
underlying self-replication [30–32] and evolution in viruses [33–35] and other basic biological systems. Yet,
despite some partial progress [10, 18, 19, 36–39], our conceptual understanding of activematerials, and living
matter in general, remains far from complete.We do not knowwhether, or underwhich conditions,
‘universality’ ideas [40] that have proved powerful in the description of equilibrium systems can be generalized
to describe collective dynamics of activematter not just qualitatively but also quantitatively. This deficitmay be
ascribed to the fact thatmathematicalmodels have been successfully tested against experiments in only a few
instances [3, 4, 15, 41–43].

Recently discovered 2D active liquid crystal (ALC) analogs [5, 44–47] comprise an important class of non-
equilibrium systems that allows further tests of general theoretical concepts [40] and specificmodels. ALCs are
assemblies of rod-like particles that exhibit non-thermal collective excitations due to steady external [44, 45] or
internal [5, 47] energy input. At high concentrations, ALCs form an active nematic phase characterized by
dynamic creation and annihilation of topological defects [5, 44, 47], reminiscent of spontaneous particle-pair
production in quantum systems. This phenomenonwas demonstrated recently [5, 47, 48] for ATP-driven
microtubule-kinesin bundles trapped inflat and curved interfaces.Moreover, these experiments [48] revealed
an unexpected nematic ordering of topological defects which is unaccounted for in current theoreticalmodels.
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Understanding the emergence of such topological super-structures is crucial for the development and control of
newmaterials, as recently demonstrated for colloidal liquid crystals [49–51].

We here develop and test a closed continuum theory for dense ALCs by generalizing the higher-order scalar
and vector theories of soft elasticmaterials [52] and bacterialfluids [15, 41] tomatrix-valuedfields. Specifically,
we propose amodification of the commonly adopted Landau–deGennes (LdG) free energy to account for the
inherently differentmicroscopic buckling behaviors of passive and active LCs [5].While bending is energetically
unfavorable in passive LCs and hence penalized by the LdG energy functional, kinesin-driven ALCs buckle
spontaneously even at low concentrations due to the extensilemotor action (figure 1(a)). This experimental
observation [5] implies that the classical LdG framework is, by construction, ill-suited to describe experiments in
whichmicrotubule bundles are sheared relative to each other bymotor proteins [5, 47, 48]. The inclusion of
active bending effects in the LdG functional yields a tensor version of the Swift–Hohenberg theory [53] of pattern
formation. The resultingminimalmodel has only two dimensionless parameters, thus allowing a detailed
comparisonwith recent experimental data [5, 48].

In addition to the traditionalQ-tensor formulation, we present an equivalent complex scalar field
representation [14, 54] thatmanifests an analogywith a generalizedGross–Pitaevskii theory [55, 56] of strongly
coupledmany-body quantum systems [57–60]. In the case of normal dispersion, the celebrated LC-
superconductor correspondence [54, 61] has helped elucidate profound parallels between the smectic phase in
passive LCs and theAbrikosov vortex lattices in type-II superconductors [62, 63]. The results below indicate that
a similar analogymay exist betweenALCs andBose–Einstein/Fermi condensates with double-well dispersion
[58–60], suggesting that ALCs could offer insights into the dynamics of these quantum systems and vice versa.

Results

Experimental conditions
Recent experiments [5, 48] show that ATP-drivenmicrotubule-kinesin bundles can self-assemble into a dense
quasi-2DALC layer at a surfactant-supported oil-water interface parallel to a planar solid
boundary(figure 1(b)). This ‘wet’ALCwas found to exhibit local nematic alignment of bundles, persistent
annihilation and creation dynamics of topological defects [5], and remarkable nematic order of the defect
orientations in thin layers [48]. Although a large number of unknown parameters has prevented detailed
quantitative comparisons between theory and experiment, several recently proposedmulti-order-parameter
models of 2DALC systems [14, 20, 64, 65]were able to reproduce qualitatively selected aspects of these
observations, such as defect-pair creation and separation [65]. Despite providing some important insights,
traditionalmodels often do not account for three relevant details of the experiments [5, 48]. First, thosemodels
typically assume divergence-free 2Dfluidflowwithin theALC layer, which is a valid approximation for isolated
free-standing film experiments [66] but neglects fluid exchange between the 2D interface and bulk in the ALC
experiments (figure 1(b)). Indeed, the surfactant-stabilized interface causes themicrotubule-kinesin bundles to
assemble into a quasi-2D layer, but places no such constraint on the fluid. As is known for classical turbulence
[67, 68], small-scale energy input can trigger turbulent upward cascades in incompressible 2D flow. Thus,
topological defect dynamics in the current standardmodelsmay be dominated by artificially enhanced

Figure 1. (a)Image sequence showing spontaneous buckling of amicrotubule bundle (dashed) caused by extensile ATP-drivenmotor
activity, adaptedwith permission fromfigure 1(c) in [5]. Time interval 11.5 s, scale bar 15 μm. For a passive or contractile bundle, one
would expect straightening instead of bending, approximately corresponding to a time-reversal of the depicted sequence.
(b)Schematic of the experimental setup reported in [5, 48], not drawn to scale. A thin oilfilm (thickness m~3 m) separates a 2DALC
layer (~ –0.2 1.0 μm) at the oil-water interface from a solid glass cover. Liquid can be exchanged between theALC layer and bulk fluid,
resulting in compressible 2D interfacial flow that is strongly damped by the nearby no-slip glass boundary and the viscous oil layer.
(c)Extensile 2Ddipole flow in the interface as predicted by the overdamped closure condition(4) for >D 0 and l l= -( )Q , 0; 0,
with l = -( )rexp 2 . The central horizontal bar indicates the unit director axis, and background colors the nematic order
parameter l~S .
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hydrodynamicmixing due to a simplifying 2D incompressibility assumption that is unlikely to hold under
realistic experimental conditions [5, 48]. Second, a relevant yet previously ignored effect is damping from the
nearby boundaries, whichmay promote topological defect ordering. Third, as alreadymentioned above, the
commonly adopted standard LdG free-energy functional does not account formotor-driven spontaneous
buckling [5] ofmicrotubule bundles (figure 1(a)), which is one of the key differences between passive and active
LCs (Z.Dogic, private communication). To overcome such limitations and achieve a quantitative description of
the experiments [5, 48], we next construct a closed continuum theory for ALCs described by a nematic tensor
field ( )rQ t , . The theory accounts for the different buckling behaviors of passive and active LCs and builds on a
self-consistent hydrodynamic closure condition.

Theory
Traditionalmulti-fieldmodels [64, 65] aim to describe the 2Dnematic phase of a dense ALC suspension by
coupling thefilament concentration ( )rc t , and the nematic order tensor ( )rQ t , to an incompressible 2D flow
field ( )v rt , that satisfies  =· v 0 in the interface plane = ( )r x y, . The nematic order parameter ( )rS t , is
proportional to the larger eigenvalue ofQ, and the filaments are oriented along the corresponding eigenvector,
or director ( )n rt , . To construct an alternative closed-form theory for the symmetric traceless 2×2-tensor
fieldQ, we start from the generic transport law

k w
d
d

¶ +  - = -· ( ) [ ] ( )
vQ Q Q

Q
, , 1t

where w =  - [ ( ) ]v v 2 is the vorticity tensor, = -[ ]A B AB BA, the commutator of twomatrices and

ò=[ ] Q r Fd2 an effective free energy. Focussing on dense suspensions as realized in the experiments [5, 48],
we neglect fluctuations in themicrotubule concentration,  ºc 0. A derivation of the advection term  · ( )vQ
from the probability conservation laws underlying generic advection-diffusionmodels is outlined in the
supplementary information. It is important, however, that  ¹ · ( ) ·v vQ Q when  ¹· v 0, which is
typically the case when fluid can enter and leave the interface. Combining LdG theory [69]with Swift–
Hohenberg theory [53], we consider the effective non-equilibrium free-energy density (supplementary
information)

Figure 2.Phase diagramobtained from simulations of equation (8) for one particular set of random initial conditions showing the
emergence of turbulent nematic states for supercritical active self-advection. (a)Weobserve convergence to defect-free stripes (blue,
panel (c),Movie S3), long-lived static and oscillatory defect lattice solutions (green, panel (d),Movie S4), oscillatory defect creation
and annihilation events (black,Movies S6 and S7), and chaotic dynamics (red, panel (b),Movie S1). Thewhite line indicates the
analytical estimate  g g= - + +( )D 2 2c 2 2

2 for the transitions between ordered and chaotic states. (b)–(d)Examples of the states

identified in panel (a)with- 1

2
-defects (black) and+ 1

2
–defects (white). Panel (d) highlights the antipolar ordering of+ 1

2
-defect

orientations (red bars); see also figure 3 andMovieS5 for a realization of this state in a~ ´10 larger simulation domain.
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g g
= - + -  + { }( ) ( ) ( )F

a
Q

b
Q Q QTr

2 4 2 4
22 4 2 2 4 2

with >a b, 0 for the nematic phase. Assuming g2 can have either sign, ultraviolet stability requires g > 04 . For
g < 02 , F penalizes bending and buckling, as is appropriate for passive LCs and possibly ‘dry’ shaken nematics
[44, 45], forcing the systemdynamics towards a homogeneous nematic ground-statemanifold. By contrast,
motor-induced spontaneous buckling [5] (figure 1(a)) of kinesin-driven ALCs demands g > 02 , and

consequently patterns of characteristic wavelength g gL ~ 4 2 become energetically favorable, as shown
below.

The requirement g > 02 for ALCs has an intrinsicallymicroscopic origin, as the ALC assembly consists of
microtubules that grow against each other and spontaneously buckle due to themotor-induced extensile shear
dynamics of adjacent bundles (figure 1(a)). To explain this important point inmore detail, let us recall that
passive LCs aremodeled using g < 02 , as the corresponding term in the free energy penalizes variations inQ and
thus inhibits spatial inhomogeneities at damping rate g <k 02

2 in Fourier space.Microscopically, the alignment
dynamics of two rod-like passive LCmolecules roughly corresponds to a time-reversal of the ALCpair-
interaction image sequence infigure 1(a), implying that a corresponding ALC systemwould develop buckling
instabilities at growth rate g >k 02

2 . Additional empirical support for this theoretical picture comes from a
comparison of the experimentally observed length scales in ALC systems: themicrotubule-kinesin bundles
realized in the ALC experiments [5, 48] are approximately 10–30 mm in length (figure 1(b) in [5]), which is on
the same scale as both the spontaneous bucklingwavelength (figures 1(c) and (d) in [5], andfigure 1(a)) and the
typical separation distance between defects (bottompanels offigure 3(d) in [5], reproduced infigure 4(a) below).
That is, there exists no substantial scale separation between the bucklingmicroscopic constituents and emergent
ALCdynamics.

Similar buckling phenomena are generically observed inmany systems that are subjected to external or
internal stresses, for example in elastic films and sheets [52, 70] and in geometrically confined cellular networks
[71, 72]. TheALCs experience an effective compressive stress due to the extensile ‘growth’ of thefilament pairs in
a confined geometry, which arises from theirmotor-induced shear dynamics. Application of such a compressive
stress leads to buckling of the network’s constituents [71, 72]. It has been shown that out-of-plane buckling of an
elastic sheet due to an effective compressive stressmay be quantitativelymodeled by a Swift–Hohenberg-type
equationwith g > 02 in the corresponding free energy [52].We expect the same to be true for the in-plane
buckling ofmicrotubules confined to a planar interface, and thus analyze here an effective theory that
incorporates this spontaneousmotor-induced buckling phenomenologically through g > 02 .

Hydrodynamic closure
To obtain a closedQ-model, we relate the 2Dflowfield v toQ through the linearly damped Stokes equation
[73, 74]

h n z-  + = -  · ( )v v Q, 32

where η is the viscosity and the rhs represents active stresses [10, 64]with z > 0 for extensile ALCs(figure 1(c)).
A pressure termdoes not appear in equation (3) because the interfacial flow is not assumed to be incompressible
and concentrationfluctuations are neglected. The ν-term in the force balance(3) has been used tomodel
interfacial damping in other contexts, such as surfactantmembranes on a solid substrate [73], and accounts for
friction from the nearby no-slip boundary in theHele–Shaw [74] approximation (figure 1(b)). In the
overdamped regime n hL 12  , we deduce from equation (3) the closure condition

z n= -  =· ( )v D Q D, . 4

Equation (4) is conceptually similar to closure conditions proposed previously for active polar films [75].
Importantly, equation (4) predicts divergent interfacial flow, ¹· v 0, and hencefluid transport perpend-
icular to the interface wherever  ¹Q: 0. Inserting(4) into(1) yields a closedQ-theory inwhich periodic
director patterns corresponding to localminima of the free energy  can becomemixed by self-generated
interfacialflow.

Complex representation andALC-quantumanalogy
The traditional characterization of 2Dnematic order in terms of the symmetric traceless 2×2matrix field

l m m l= -( )Q , ; , is redundant, for only two real scalarfields l ( )rt , and m ( )rt , are needed to specify the
nematic state at each position = ( )r x y, . To obtain an irreducible representation [14, 54]we define the complex
position coordinate = +z x yi , velocity field = +( )v t z u w, i and complex order parameter

y l m= +( )t z, i , such that y= ∣ ∣S 2 . In terms of theWirtinger gradient operator ¶ = ¶ - ¶( )ix y
1

2
, the 2D

Laplacian takes the form  = ¶¶¯42 and the closure condition(4) reduces to y= - ¶v D2 . Denoting the real
and imaginary parts of an operator byR{ } and I{ } , equations (1) and(2)may be equivalently expressed
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as

y y
d
dy

¶ + = -y ¯ ( )


, 5t

where the self-advection operator is given by

R Iy y k y= - ¶ + ¶ ¶ + ¶y {( ) ( ) } { } ( ) D D4 4 i 62 2

and the free energy òy y =[ ¯ ] z G, d has the density

y y g y y g y y= - + + ¶¶ + ¶¶∣ ∣ ∣ ∣ ¯ ( ¯ ) ¯ ( ¯ ) ( )G a
b

2
4 4 . 72 4

2 4
2

For g < 02 and g  04 , equation (7) reduces to the energy density of theGross–Pitaevskiimean-fieldmodel
[55, 56] for weakly interacting boson gases.Historically, this limit case has been crucial [54, 61] for elucidating
the analogy between the smectic phase of passive LCs and theAbrikosov flux lattice in type-II superconductors
[62, 63]. For g g >, 02 4 , equation (7) effectively describes double-well dispersion [57], as recently realized for
quasi-momenta in spin–orbit-coupled Bose–Einstein condensates [58, 60] and Fermi gases [59]. This fact
establishes an interesting connection between dense ALCs and strongly coupled quantum systems: when self-
advection is negligible ( )D 0 , thefixed point configurations of equation (5) coincidewith the ‘eigenstates’ of
generalizedGross–Pitaevskiimodels that incorporate wavelength selection.

Stability analysis
The qualitativemodel dynamics is not significantly altered formoderate values ofκ (Movies S1 and S2), sowe
neglect the commutator termby setting k = 0 fromnowon (see supplementary information for k > 0). To
understand the properties of equations (5) and (6)when self-advection is relevant, we perform a fixed point
analysis of the rescaled dimensionless equation (supplementary information)

Ry y y y y y g y y¶ - ¶ + ¶ ¶ = - - ¶¶ - ¶¶{( ) ( ) } ∣ ∣ ( ¯ ) ( ¯ ) ( )⎜ ⎟⎛
⎝

⎞
⎠D4

1

4
4 4 , 8t

2 2
2

2

by focussing on the uniform state y = q
* e1

2
i2 , which corresponds to a nematic order parameter value S= 1and

homogeneous director angle θ relative to the x-axis. Consideringwave-like perturbations y y= + ˆ ( ) ·
*  t e k ri

with ∣ ˆ ∣ 1 and extensile ALCswith >D 0, onefinds that y* is unstable when g > 02 (supplementary

information). For subcritical self-advection, g g< = - + +( )D D 2 2c 2 2
2 , the dominant instability is driven

bymodes withwavenumber g g=∣ ∣ ( )k 22 4 , suggesting the formation of stripe patterns with typical

wavelength p g gL » 8 2
4 2 . By contrast, for supercritical advection, >D Dc, themost unstablemode

propagates perpendicular to the director, f g g q p= + +( ) ( ( ) ( ) ( ))* *
k D, 2 4 , 22 4 , suggesting the possibi-

lity of transversemixing.

Phase diagram
To investigate the nonlinear dynamics of equation (8), we implemented a Fourier pseudospectral algorithmwith
modifiedRunge–Kutta time-stepping [76] (Methods) and so evolved the real and imaginary parts of y ( )t z, in
time for periodic boundary conditions in space. A numerically obtained g( )D,2 -phase diagram for random
initial conditions confirms the existence of a turbulent nematic phase if active self-advection is sufficiently
strong (figures 2(a) and (b);Movie S1). Ordered configurations prevail at low activity (figures 2(a), (c) and (d);
Movies S3, S4 and S6). Although the ground-states of the free energy (2) are in general not homogeneous, the

critical curve separating the two regimes is in fair agreementwith the estimate g g= - + +( )D 2 2c 2 2
2 from

linear stability of the homogenous state (white line infigure 2(a)). For subcritical values of the advection
parameterD, we observe either defect-free ground-states or long-lived lattice-like states exhibiting ordered
defect configurations (figures 2(c) and (d)). Regarding the subsequent comparison between theory and
experiment, it is important to note that the lattices are also found in simulationswith a large domain (figure 3;
Movie S5). These spatially periodic states generally exhibit antipolar long-range ordering of
+ 1

2
-defects(figures 2(d); 3(a)) accompanied by vortexflow lattices (figure 3(c)). Numerical free-energy

calculations show that defect-free states (figure 2(c)) typically have slightly lower energies than the lattice states
(figure 2(d)), leaving open the possibility of a very slow decay of the latter. However, regardless of whether such
lattice states are extremely long-livedmetastable or truly stable states, these simulation results confirm that anti
polar ordering of+ 1

2
-defect pairs can persist over experimentally relevant time-scales.

Theory versus experiment
To test our theory systematically against existing experimental data [5, 48], we analyze defect-pair dynamics,
global defect ordering and defect statistics in the turbulent nematic phase.

5
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Spontaneous defect-pair creation and subsequent propagation, as reported in recent ALC experiments [5]
and observed in our simulations, are compared infigure 4. In the experimental system [5], a + -( ),1

2

1

2
-defect

pair is createdwhen fracture along incipient crack regions [20] becomes energeticallymore favorable than

buckling. After creation, the+ 1

2
-defectmoves away rapidly whereas the position of the- 1

2
-defect remains

approximately fixed for up to several seconds (figure 4(a)).We note that an asymmetry in the speeds of
topological defects has also been observed in passive liquid crystals [77–79]. Our simulations of theminimal
model defined in equation (8) accurately reproduce the details of the experimentally observed dynamics
(figure 4(b);Movies S1 and S2).

Another striking and unexplained experimental observation [48] is the emergence of orientational order of

+ 1

2
-defects in thinALC layers (figure 5). Using the setup illustrated infigure 1(b), recent experiments [48]

demonstrated nematic alignment of+ 1

2
-defects in thin ALC layers of thickness ~h 250 nm (figure 5(a)),

whereas thicker ALC layers with m~h 1 m showed no substantial orientational order on large scales
(figure 5(b)). To investigate whether our theory can account for these phenomena, we tracked defect positions ri

(Methods) and defect orientations =  · ( ) ∣ · ( )∣d r rQ Qi i i [80] in simulations for different values of the
advection parameter z n=D , since Brinkman-type scaling arguments suggest thatD increases with the ALC
layer thickness, nµ µD h1 p with Î [ ]p 1, 2 . Forweakly supercritical advection, D Dc, wefind that

equation (8) predicts robust antipolar alignment of+ 1

2
-defects (figure 5(c)). In our simulations, this ordering

decreases as the effectivemixing strengthD increases (figure 5(d)), consistent with the experimental results [48]
for thicker ALC layers (figure 5(b)). Similar orderingwas observed in simulations that incorporated alignment of
the nematicfield near the horizontal boundaries of the simulation box (supplementary information; figure S5).
To quantify the degree of orientational order, we recorded the distances dij between all+

1

2
-defect pairs (i, j) as

well as their relative orientation angles q p= Î- ( · ) [ ]d dcos 0,ij i j
1 . The resulting pair-orientation

distributions q( ∣ )p r , and polar and nematic correlation functions, = á ñ( ) ·d dP r i j r and

= á ñ -( ) ( · )d dN r 2 1i j r
2 , are shown infigure 6, with á ñ· r denoting an average over pairs of defects separated by

Figure 3.Vortex lattice states with antipolar long-range ordering of nematic defects, see alsoMovie S5. (a) Long-lived nematic order

parameter fieldwith periodically aligned- 1

2
-defects (black) and+ 1

2
-defects (red). (b) Line integral convolution (LIC) plot of the

corresponding director field as a proxy formicrotubule-bundle patterns. (c) LIC plot of the corresponding fluid velocity field, color-
coded by normalized vorticity, demonstrates the formation of a vortexflow lattice. Dimensionless simulation parameters are

g= =D 0.25, 1.8752 .

Figure 4.Defect-pair creation and propagation in experiment and theory. (a)Experimentally observed dynamics of a defect pair,
spontaneously produced by buckling and subsequent fracture offilaments; adaptedwith permission fromfigure 3(d) in [5]. Scale bar
20 μm, time lapse 15 s. (b) Line integral convolution (LIC) plot of the director fields showing the spontaneous creation and
propagation of a defect-pair in a simulation of equation (8) forD= 1.5, g = 12 . As in the experiments,+ 1

2
-defects (yellow) generally

move faster than- 1

2
-defects (light blue), seefigure 7.
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a distance r. The localmaxima in the orientation distribution at q = 0 and q p= signal antipolar ordering
(figure 6(a)), which is also reflected in the oscillatory behavior of the polar and nematic correlation functions
(figures 6(c) and (d)). The diminished intensity of the localmaxima for larger values ofD indicates that enhanced
hydrodynamicmixing reduces orientational order (figures 6(c) and (d)).

Figure 5. Strong andweak antipolar ordering of+ 1

2
-defects as (a), (b) observed in experiments [48] and (c), (d)predicted by our

theory based on 2D simulations with periodic boundary conditions. Light-bluemarkers:- 1

2
-defects. Yellowmarkers:+ 1

2
-defects.

Red bars: orientation of+ 1

2
-defects. (a)+ 1

2
-defects in thin ALCfilms (thickness ~h 250 nm) show strong nematic alignment.

(b)+ 1

2
-defects in thicker ALC films ( ~h 1 μm) aremore disordered. (c), (d) Forweak effective hydrodynamic couplingD,

simulations show antipolar ordering, which is inhibited for larger values ofD. The average number of defects in the full simulation box
is approximately (c) 240 and (d) 350. Figures (a) and (b) kindly provided byDeCamp andDogic.

Figure 6. Increasing activity andfilm thickness decreases antipolar ordering in simulations. (a), (b)Maxima of the numerically
obtained local pair orientation PDFs q( ∣ )p rij signal antipolar local ordering of+ 1

2
-defects as they are separated by the typical defect-

lattice spacing. The defect distance r is specified in units of themean nearest-neighbor distance r0 between + 1

2
-defects. (c), (d)PolarP

(r) and nematicN(r) correlation functions forD=1.5 (red) andD=3 (blue). Increasing the effective hydrodynamic couplingD
leads to strongermixing andhence decreases nematic order, which is corroborated by the nematic correlation length being ~40%
shorter forD=3 than forD=1.5 (panel (d)). This is also reflected by the diminished intensity of themaxima in panel (b) relative to
panel(a). The simulation parameters correspond to those given infigures 5(c) and (d).
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Lastly, we test the theoretically predicted defect statistics against a separate experimental data set kindly
provided byDeCamp et al (private communication). Since our simulations are performed in dimensionless
units, there is freedom to choose a characteristic lengthscale l0 and timescale t0. To relate theory and
experiments, we determine ( )l t,0 0 such that the jointmean speed andmean lifetime of 1

2
-defectsmatch the

experimental values m= -v̄ 6.6 m s 1 and t =¯ 52.8 s. After fixing these global scales, we can compare details of
the speed and lifetime distributions (figure 7). To this end, wefirst locate the ‘best-fit’ simulation parameters in
the g( )D,2 -parameter space explored in the phase diagram (figure 2(a)). This procedure identifies
g = =D1, 1.752 as the best-match parameters, although nearby parameter values and simulationswith k = 1

producefits of similar quality, corroborating the robustness of themodel (figure S4). For- 1

2
-defects, we find

adequate agreement between experiment and theory for speed and lifetime probability density functions (PDFs),
as evident from figures 7(a) and (b). For+ 1

2
-defects, simulation results also agreewell with the experimental

measurements (figures 7(c) and (d)), but one notices two systematic differences. First, while the peak heights of
the PDFs agreewithin a few percent, experimentallymeasured speed values for+ 1

2
-defects are on average

slightly larger than theoretically predicted values (figure 7(c)). Second, simulation data predict aminiscule tail-
fraction of long-living+ 1

2
-defects not detected in the experiment (figure 7(d)). In addition, based on the

experimental density estimate of 30 defects mm−2 [48], we find that the defect density at any given time in the
‘best-fit’ simulation is~ ´2.3 lower than in the experiments. As discussed below, such deviations can be
explained plausibly by specificmodel assumptions. Taken together, the above results confirm that theminimal
model defined by equation (8)provides a satisfactory qualitative and quantitative description of themain
experimental results [5, 48].

Discussion

Pattern-formationmechanism
Equations (2) and(7) epitomize the idea of ‘universality’ in spatio-temporal pattern formation, as known from
Swift–Hohenberg-type scalarfield theories [53, 81]. The free-energy expressions contain the leading-order
terms of generic series expansions in both order-parameter space and Fourier space, consistent with spatial and
nematic symmetries.When considering passive systemswith a preference for homogenization (g < 02 ), it

Figure 7.Quantitative comparison of defect statistics between predictions of equation (8) and experimental data [48], using the
parameter estimation procedure described in the text. For- 1

2
-defects, both (a) speed distribution and (b) lifetime distribution agree

well. (c) For+ 1

2
-defects, experimentallymeasured speed values are slightly larger, as ourmodel assumes a strongly overdamped limit.

(d)Simulationswith periodic boundary conditions (Movie S8) predict a low-probability tail of large lifetimeswhich is not visible in
the experiment, likely due to its restricted field of view or additional noise. Dimensionless simulation parametersD=1.75 and
g = 12 translate into the following dimensional values: =a 0.08 s−1, =b 0.32 s−1, =D 1791 μm2 s−1, g m= 1024 m2

2 s−1,
g m= ´3.28 10 m4

6 4 s−1. The numbers n reflect the number of 1

2
-defects tracked, and the simulation domain contained∼130

defects at any given time.
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usually suffices to keep only the quadratic gradient terms. By contrast, for pattern forming systems, the
coefficient in front of the lowest-order gradient contribution can change sign [52, 53], and onemust include
higher-order derivatives to ensure stability.We hypothesize that the sign change of g2 is directly related to the
motor-induced buckling ofmicrotubule bundles (figure 1(a)), an effect that is not captured by the standard LdG
free-energy for passive liquid crystals. In a few select cases, expressions of the form(2) and(7) can be
systematically derived [52, 53, 82]. Generally, one can regard the free-energy expansion(7) as an effective field
theorywhose phenomenological parameters can be determined from experiments. This approach has proved
successful for dense bacterial suspensions [15, 41] and now also for ALCs, indeed suggesting some universality in
the formation and dynamics of topological defects in active systems.

Nematic defect order
Although g( )D,2 are varied as independent effective parameters in the simulations, they are likely coupled
through underlying physical and chemical parameters. For example, it is plausible that a change inATP-
concentration orfilm thickness would affect bothg2 andD. The parameterD can also be interpreted as an
effective Reynolds number. In our numerical exploration of the g( )D,2 -parameter space, we observe for

subcritical advectionD either long-lived lattice-like states exhibiting nematically aligned+ 1

2
-defects or defect-

free ground-states (figures 2 and 3;Movies S3, S4, S5, S6 and S7). Ordered defect configurations correspond to
localminima or saddles in the free-energy landscape and have only slightly higher energy than defect-free states
(figure 2(c)).When the activity ζ is sufficiently large that advection ismarginally supercritical, D Dc, chaotic
system trajectories spend a considerable time in the vicinity of thesemetastable lattice states, which provides a
physical basis for the orientational order of defects in thin ALC films [48]. For D Dc , the ALC system can
access awider range of high-energy states, leading to increased disorder in the defect dynamics. Although the
strongly turbulent regime D Dc requires high time-resolution and is thus difficult to realize in long-time
simulations, the inhibition of nematic defect order at larger values ofD is evident from the reduced peak heights
infigures 6(c) and (d).

Defect statistics
The systematic speed deficit infigure 7(c) likely reflects the overdamped closure condition(4), which suppresses
the propagation of hydrodynamic excitations. Since flow in a newly created defect pair generally points from the
- 1

2
to the+ 1

2
-defect, theminimalmodel(8) can be expected to underestimate the speeds of+ 1

2
-defects. This

effect could be explored in future experiments through a controlled variation of the thickness and viscosity of the
oilfilm (figure 1(b)). The low-probability tail of long-living+ 1

2
-defects in the simulation data (figure 7(d))may

be due to the fact that they can be tracked indefinitely in the simulations but are likely to leave the finite field of
view in the experiments. In the future, theminimal theory presented here should be extended systematically by
adding physically permissible extra terms [83] to the free-energy, explicitly simulating the full hydrodynamics in
equation (3), or incorporating additional terms into equation (1) that account for the interaction between the
nematicfield and the induced flow [65, 83].

Future extensions
Theminimalmodel formulated in equations (1) and (2) can be systematically extended to improve further the
quantitative agreement between experiment and theory. For instance, onemay append to the right-hand side of
(1) an additional fourth-order linear termof the form   +( ) [ · ( · )]Q [84], + denoting the symmetric
traceless part of the operator . Such a term only affects the high-wavenumber damping at order k4 and thus is
not expected to alter significantly the results obtained here.We also note that extra terms coupling the nematic
field to the induced flowmay be added to equation (1), an example being SE, where =  + ( )[ ( ) ]v vE 1 2 is
the symmetrized strain rate tensor [25, 65]. Our above analysis neglected such secondary hydrodynamic effects
in the interest of constructing aminimalmathematical theory capable of capturing key experimental
observations.Moreover, this simplificationmay be justified on the physical basis that steric interactions and
motor-induced buckling are expected to dominate over flow-alignment effects at highmicrotubule densities3.
The effect ofmicrotubule bendingmay be enhanced by appending a hydrodynamic interaction term
proportional to +E [25], since the closure condition = -  ·v D Q implies that = - D+ ( )E D Q2 , which
augments the bending term g- DQ2 in equation (2). However, the scale separation between the experimentally
observedfilament bucklingwavelength and the flow structures in the isotropic phase at lowmicrotubule
concentrations (see figure 1(d) in [5]) suggests that such hydrodynamic effects play a secondary role. A natural
next stepwould be to derive systematically the bending term fromamicroscopicmodel ofmotors and filaments
as introduced in [20]. Finally, it will beworthwhile to attempt constructing a fully 3D theory for the ALCs and

3
In active nematics of low to intermediate density, concentration fluctuations can trigger additional instabilities [85].
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fluid and subsequently project on the quasi-2D interface, although additional assumptions are required then to
obtain a closed 2D systemof equations.

Conclusions

Recent experimental and theoretical studies showed that fourth-order PDEmodels for scalar and vector fields
provide an accurate quantitative description of surface-pattern formation in soft elasticmaterials [52] and
orientational order in dense bacterialfluids [15, 41]. Here, we have generalized these ideas tomatrix-valued
fields describing soft active nematics. The above analysis demonstrates that a generic fourth-orderQ-tensor
model can shed light on experimental observations in 2DALCs [48], including the emergence of orientational
order of topological defects. Physically, the higher-order generalization(2) becomes necessary because the
commonly adopted LdG free-energy, whichwas designed to describe passive liquid crystals, does not account
for the experimentally observed spontaneous buckling ofmotor-driven ALCs [5].More generally, the fact that
three vastly different softmatter systems can be treated quantitatively in terms of structurally similar higher-
order PDEs [15, 41, 52]promises a unifiedmathematical framework for the description of pattern formation
processes in a broad class of complexmaterials. In addition, the free-energy analogy [54] between dense ALCs
and generalizedGross–Pitaevskiimodels suggests that the self-organization principles [40] ofmesoscopic active
matter andmicroscopic quantum systems [57–60] could bemore similar than previously thought.

Methods
Numerical solver and defect tracking
To simulate equation (8), we implemented a numerical algorithm that evolves the real and imaginary parts
l ( )rt , and m ( )rt , of the complex order parameterψ in time for periodic boundary conditions in space. The
algorithm solves equation (8) pseudospectrally in space using =ℓN 256 or =ℓN 512 lattice points in each
direction and a simulation box of size L= 6π (figures 2 and 4) or L= 18π (figures 3, 5–7). Spectral analysis shows
that =ℓN 256 is generally sufficient to resolve thefine-structure of the numerical solutions(supplementary
figure S6). The algorithm steps forward in time using amodified exponential time-differencing fourth-order
Runge–Kuttamethod [76]with time stepD -t 2 10. Simulationswere initializedwith either a single defect pair
or randomfield configurations l m{ ( ) ( )}r r0, , 0, . Defects are located at the intersections of the zero-contours
of l andμ, their positions tracked by implementing JamesMunkres’ variant of theHungarian assignment
algorithm [86] (supplementary information).
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