50 research outputs found

    Joint QTL analysis of three connected F2-crosses in pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous QTL mapping resource populations are available in livestock species. Usually they are analysed separately, although the same founder breeds are often used. The aim of the present study was to show the strength of analysing F<sub>2</sub>-crosses jointly in pig breeding when the founder breeds of several F<sub>2</sub>-crosses are the same.</p> <p>Methods</p> <p>Three porcine F<sub>2</sub>-crosses were generated from three founder breeds (i.e. Meishan, Pietrain and wild boar). The crosses were analysed jointly, using a flexible genetic model that estimated an additive QTL effect for each founder breed allele and a dominant QTL effect for each combination of alleles derived from different founder breeds. The following traits were analysed: daily gain, back fat and carcass weight. Substantial phenotypic variation was observed within and between crosses. Multiple QTL, multiple QTL alleles and imprinting effects were considered. The results were compared to those obtained when each cross was analysed separately.</p> <p>Results</p> <p>For daily gain, back fat and carcass weight, 13, 15 and 16 QTL were found, respectively. For back fat, daily gain and carcass weight, respectively three, four, and five loci showed significant imprinting effects. The number of QTL mapped was much higher than when each design was analysed individually. Additionally, the test statistic plot along the chromosomes was much sharper leading to smaller QTL confidence intervals. In many cases, three QTL alleles were observed.</p> <p>Conclusions</p> <p>The present study showed the strength of analysing three connected F<sub>2</sub>-crosses jointly. In this experiment, statistical power was high because of the reduced number of estimated parameters and the large number of individuals. The applied model was flexible and was computationally fast.</p

    A novel method for the estimation of the relative importance of breeds in order to conserve the total genetic variance

    Get PDF
    The need for conservation of farm animal genetic resources is widely accepted. A key question is the choice of breeds to be conserved. For this purpose, a core set of breeds was introduced in that the total genetic variance of a hypothetical quantitative trait was maximised (MVT core set). For each breed the relative contribution to the core set was estimated and the breeds were ranked for conservation priority according to their relative contribution. The method was based on average kinships between and within breeds and these can be estimated using genetic marker data. The method was compared to a recently published core set method that maximises the variance of a hypothetical population that could be obtained by interbreeding the conserved breeds (MVO core set). The results show that the MVT (MVO) core set favours breeds with a high (low) within breed kinship that are not related to other breeds. Following this, the MVT core set method suggests conserving breeds that show a large difference in the respective population mean of a hypothetical quantitative trait. This maximises the speed of achieving selection response for this hypothetical selection direction. Additionally, bootstrap based methods for the estimation of the breed's contribution to the core sets were introduced, substantially improving the accuracy of the contribution estimates

    Structural variants and tandem repeats in the founder individuals of four F2 pig crosses and implications to F2 GWAS results

    Get PDF
    Background Structural variants and tandem repeats are relevant sources of genomic variation that are not routinely analyzed in genome wide association studies mainly due to challenging identification and genotyping. Here, we profiled these variants via state-of-the-art strategies in the founder animals of four F2 pig crosses using whole-genome sequence data (20x coverage). The variants were compared at a founder level with the commonly screened SNPs and small indels. At the F2 level, we carried out an association study using imputed structural variants and tandem repeats with four growth and carcass traits followed by a comparison with a previously conducted SNPs and small indels based association study. Results A total of 13,201 high confidence structural variants and 103,730 polymorphic tandem repeats (with a repeat length of 2-20 bp) were profiled in the founders. We observed a moderate to high (r from 0.48 to 0.57) level of co-localization between SNPs or small indels and structural variants or tandem repeats. In the association step 56.56% of the significant variants were not in high LD with significantly associated SNPs and small indels identified for the same traits in the earlier study and thus presumably not tagged in case of a standard association study. For the four growth and carcass traits investigated, many of the already proposed candidate genes in our previous studies were confirmed and additional ones were identified. [...] Conclusions The current study provides insights into the characteristics of structural variants and tandem repeats and their role in association studies. A systematic incorporation of these variants into genome wide association studies is advised. While not of immediate interest for genomic prediction purposes, this will be particularly beneficial for elucidating biological mechanisms driving the complex trait variation

    Meta-analyses of genome wide association studies in lines of laying hens divergently selected for feather pecking using imputed sequence level genotypes.

    Get PDF
    BACKGROUND: Feather pecking (FP) is damaging behavior in laying hens leading to global economic losses in the layer industry and massive impairments of animal welfare. The objective of the study was to discover genetic variants and affected genes that lead to FP behavior. To achieve that we imputed low-density genotypes from two different populations of layers divergently selected for FP to sequence level by performing whole genome sequencing on founder and half-sib individuals. In order to decipher the genetic structure of FP, genome wide association studies and meta-analyses of two resource populations were carried out by focusing on the traits 'feather pecks delivered' (FPD) and the 'posterior probability of a hen to belong to the extreme feather pecking subgroup' (pEFP). RESULTS: In this meta-analysis, we discovered numerous genes that are affected by polymorphisms significantly associated with the trait FPD. Among them SPATS2L, ZEB2, KCHN8, and MRPL13 which have been previously connected to psychiatric disorders with the latter two being responsive to nicotine treatment. Gene set enrichment analysis revealed that phosphatidylinositol signaling is affected by genes identified in the GWAS and that the Golgi apparatus as well as brain structure may be involved in the development of a FP phenotype. Further, we were able to validate a previously discovered QTL for the trait pEFP on GGA1, which contains variants affecting NIPA1, KIAA1211L, AFF3, and TSGA10. CONCLUSIONS: We provide evidence for the involvement of numerous genes in the propensity to exhibit FP behavior that could aid in the selection against this unwanted trait. Furthermore, we identified variants that are involved in phosphatidylinositol signaling, Golgi metabolism and cell structure and therefore propose changes in brain structure to be an influential factor in FP, as already described in human neuropsychiatric disorders

    Simulation of dual-purpose chicken breeding programs implementing gene editing

    Get PDF
    Background: In spite of being controversial and raising ethical concerns, the application of gene editing is more likely to be accepted when it contributes to improving animal welfare. One of the animal welfare and ethical issues in chicken breeding is chick culling, the killing of the male layer chicks after hatching due to the poor fattening performance. Although establishing dual-purpose chicken lines could solve this problem, unfavorable genetic correlations between egg and meat production traits hindered their competitiveness. Although it is also controversial in ethical terms, gene editing may accelerate genetic progress in dual-purpose chicken and alleviate the ethical concerns from chick culling. Results: The simulation compared the utility improvement in dual-purpose use under two breeding schemes: one consisting in the improvement of the laying hens, and the second in the improvement of a synthetic line obtained from a layer broiler cross. In each breeding scheme, the breeding programs were simulated with and without gene editing. Polygenic breeding values and 500 simulated quantitative trait loci (QTL) with different levels of pleiotropy caused negative correlations between egg production, meat production, and overall health. The results of the simulation demonstrated that genetic gain could be accelerated by at most 81% for several generations if gene editing was used. The actual increase in genetic gain depended on the number of single nucleotide polymorphisms (SNPs) being edited per animal. The rate of genetic improvement became equal in scenarios with and without gene editing after 20 generations. This is because the remaining segregating QTL had small effects and their edition would have negative overall health effects from potential off-target edits. Although gene editing can improve genetic gain in quantitative traits, it can only be recommended as long as QTL with reasonable effect sizes are segregating and detectable. Conclusions: This simulation demonstrates the potential of gene editing to accelerate the simultaneous improvement of negatively correlated traits. When the risk of negative consequences from gene editing persists, the number of SNPs to be edited should be chosen carefully to obtain the optimal genetic gain

    Estimation of breed contributions to present and future genetic diversity of 44 North Eurasian cattle breeds using core set diversity measures

    Get PDF
    Extinction of breeds threatens genetic diversity of livestock species. The need to conserve genetic diversity is widely accepted but involves in general two questions: (i) is the expected loss of diversity in a set of breeds within a defined future time horizon large enough to establish a conservation plan, and if so (ii) which breeds should be prioritised for such a conservation plan? The present study uses a marker assisted methodology to address these questions. The methodology combines core set diversity measures with a stochastic method for the estimation of expected future diversity and breed marginal diversities. The latter is defined as the change in the total diversity of all breeds caused by a one unit decrease in extinction probability of a particular breed. The stochastic method was validated by means of simulations. A large field data set consisting of 44 North Eurasian cattle breeds was analysed using simplified determined extinction probabilities. The results show that the expected loss of diversity in this set within the next 20 to 50 years is between 1 and 3% of the actual diversity, provided that the extinction probabilities which were used are approximately valid. If this loss is to be reduced, it is sufficient to include those three to five breeds with the highest marginal diversity in a conservation scheme

    Genomic breeding value estimation using nonparametric additive regression models

    Get PDF
    Genomic selection refers to the use of genomewide dense markers for breeding value estimation and subsequently for selection. The main challenge of genomic breeding value estimation is the estimation of many effects from a limited number of observations. Bayesian methods have been proposed to successfully cope with these challenges. As an alternative class of models, non- and semiparametric models were recently introduced. The present study investigated the ability of nonparametric additive regression models to predict genomic breeding values. The genotypes were modelled for each marker or pair of flanking markers (i.e. the predictors) separately. The nonparametric functions for the predictors were estimated simultaneously using additive model theory, applying a binomial kernel. The optimal degree of smoothing was determined by bootstrapping. A mutation-drift-balance simulation was carried out. The breeding values of the last generation (genotyped) was predicted using data from the next last generation (genotyped and phenotyped). The results show moderate to high accuracies of the predicted breeding values. A determination of predictor specific degree of smoothing increased the accuracy

    Combined analysis of data from two granddaughter designs: A simple strategy for QTL confirmation and increasing experimental power in dairy cattle

    Get PDF
    A joint analysis of five paternal half-sib Holstein families that were part of two different granddaughter designs (ADR- or Inra-design) was carried out for five milk production traits and somatic cell score in order to conduct a QTL confirmation study and to increase the experimental power. Data were exchanged in a coded and standardised form. The combined data set (JOINT-design) consisted of on average 231 sires per grandsire. Genetic maps were calculated for 133 markers distributed over nine chromosomes. QTL analyses were performed separately for each design and each trait. The results revealed QTL for milk production on chromosome 14, for milk yield on chromosome 5, and for fat content on chromosome 19 in both the ADR- and the Inra-design (confirmed within this study). Some QTL could only be mapped in either the ADR- or in the Inra-design (not confirmed within this study). Additional QTL previously undetected in the single designs were mapped in the JOINT-design for fat yield (chromosome 19 and 26), protein yield (chromosome 26), protein content (chromosome 5), and somatic cell score (chromosome 2 and 19) with genomewide significance. This study demonstrated the potential benefits of a combined analysis of data from different granddaughter designs
    corecore