31 research outputs found

    Poly(3-hydroxybutyrate) production in an integrated electromicrobial setup: Investigation under stress-inducing conditions

    Get PDF
    Poly(3-hydroxybutyrate) (PHB), a biodegradable polymer, can be produced by different microorganisms. The PHB belongs to the family of polyhydroxyalkanoate (PHA) that mostly accumulates as a granule in the cytoplasm of microorganisms to store carbon and energy. In this study, we established an integrated one-pot electromicrobial setup in which carbon dioxide is reduced to formate electrochemically, followed by sequential microbial conversion into PHB, using the two model strains, Methylobacterium extorquens AM1 and Cupriavidus necator H16. This setup allows to investigate the influence of different stress conditions, such as coexisting electrolysis, relatively high salinity, nutrient limitation, and starvation, on the production of PHB. The overall PHB production efficiency was analyzed in reasonably short reaction cycles typically as short as 8 h. As a result, the PHB formation was detected with C. necator H16 as a biocatalyst only when the electrolysis was operated in the same solution. The specificity of the source of PHB production is discussed, such as salinity, electricity, concurrent hydrogen production, and the possible involvement of reactive oxygen species (ROS)

    A Saccharomyces cerevisiae assay system to investigate ligand/adipoR1 interactions that lead to cellular Signaling

    Get PDF
    Adiponectin is a mammalian hormone that exerts anti-diabetic, anti-cancer and cardioprotective effects through interaction with its major ubiquitously expressed plasma membrane localized receptors, AdipoR1 and AdipoR2. Here, we report a Saccharomyces cerevisiae based method for investigating agonist-AdipoR interactions that is amenable for high-throughput scale-up and can be used to study both AdipoRs separately. Agonist-AdipoR1 interactions are detected using a split firefly luciferase assay based on reconstitution of firefly luciferase (Luc) activity due to juxtaposition of its N- and C-terminal fragments, NLuc and CLuc, by ligand induced interaction of the chimeric proteins CLuc-AdipoR1 and APPL1-NLuc (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1-NLuc) in a S. cerevisiae strain lacking the yeast homolog of AdipoRs (Izh2p). The assay monitors the earliest known step in the adiponectin-AdipoR anti-diabetic signaling cascade. We demonstrate that reconstituted Luc activity can be detected in colonies or cells using a CCD camera and quantified in cell suspensions using a microplate reader. AdipoR1-APPL1 interaction occurs in absence of ligand but can be stimulated specifically by agonists such as adiponectin and the tobacco protein osmotin that was shown to have AdipoR-dependent adiponectin-like biological activity in mammalian cells. To further validate this assay, we have modeled the three dimensional structures of receptor-ligand complexes of membrane-embedded AdipoR1 with cyclic peptides derived from osmotin or osmotin-like plant proteins. We demonstrate that the calculated AdipoR1-peptide binding energies correlate with the peptides' ability to behave as AdipoR1 agonists in the split luciferase assay. Further, we demonstrate agonist-AdipoR dependent activation of protein kinase A (PKA) signaling and AMP activated protein kinase (AMPK) phosphorylation in S. cerevisiae, which are homologous to important mammalian adiponectin-AdipoR1 signaling pathways. This system should facilitate the development of therapeutic inventions targeting adiponectin and/or AdipoR physiology.Peer Reviewe

    Production of halophilic proteins using Haloferax volcanii H1895 in a stirred-tank bioreactor

    No full text
    The success of biotechnological processes is based on the availability of efficient and highly specific biocatalysts, which can satisfy industrial demands. Extreme and remote environments like the deep brine pools of the Red Sea represent highly interesting habitats for the discovery of novel halophilic and thermophilic enzymes. Haloferax volcanii constitutes a suitable expression system for halophilic enzymes obtained from such brine pools. We developed a batch process for the cultivation of H. volcanii H1895 in controlled stirred-tank bioreactors utilising knockouts of components of the flagella assembly system. The standard medium Hv-YPC was supplemented to reach a higher cell density. Without protein expression, cell dry weight reaches 10 g L−1. Two halophilic alcohol dehydrogenases were expressed under the control of the tryptophanase promoter p.tna with 16.8 and 3.2 mg gCDW −1, respectively, at a maximum cell dry weight of 6.5 g L−1. Protein expression was induced by the addition of l-tryptophan. Investigation of various expression strategies leads to an optimised two-step induction protocol introducing 6 mM l-tryptophan at an OD650 of 0.4 followed by incubation for 16 h and a second induction step with 3 mM l-tryptophan followed by a final incubation time of 4 h. Compared with the uncontrolled shaker-flask cultivations used until date, dry cell mass concentrations were improved by a factor of more than 5 and cell-specific enzyme activities showed an up to 28-fold increased yield of the heterologous proteins

    C

    No full text

    Arabidopsis DIACYLGLYCEROL KINASE4 is involved in nitric oxide-dependent pollen tube guidance and fertilization

    No full text
    Nitric oxide (NO) is a key signaling molecule that regulates diverse biological processes in both animals and plants, including important roles in male gamete physiology. In plants, NO is generated in pollen tubes (PTs) and affects intracellular responses through the modulation of Ca2+ signaling, actin organization, vesicle trafficking and cell wall deposition, bearing consequences in pollen-stigma interactions and PT guidance. In contrast, the NO-responsive proteins that mediate these responses remain elusive. Here, we show that PTs of Arabidopsis thaliana mutants impaired in the pollen-specific DIACYLGLYCEROL KINASE4 (DGK4) grow slower and become partially insensitive to NO-dependent growth inhibition and re-orientation responses. Recombinant DGK4 protein yields NO-responsive spectral and catalytic changes in vitro that are compatible with a role in NO perception and signaling in PTs. In addition to the expected phosphatidic acid-producing kinase activity, DGK4 recombinant protein also revealed guanylyl cyclase activity, as inferred by sequence analysis. Our results are compatible with a role for the fast-diffusible NO gas in signaling and cell-cell communication via the modulation of DGK4 activity during the progamic phase of angiosperm reproduction
    corecore