2,814 research outputs found
The modifier effect and property mutability
The modifier effect is the reduction in perceived likelihood of a generic property sentence, when the head noun is modified. We investigated the prediction that the modifier effect would be stronger for mutable than for central properties, without finding evidence for this predicted interaction over the course of five experiments. However Experiment 6, which provided a brief context for the modified concepts to lend them greater credibility, did reveal the predicted interaction. It is argued that the modifier effect arises primarily from a general lack of confidence in generic statements about the typical properties of unfamiliar concepts. Neither prototype nor classical models of concept combination receive support from the phenomenon
Recommended from our members
On prototypes as defaults (Comment on Connolly, Fodor, Gleitman and Gleitman, 2007)
Supernova cosmology: legacy and future
The discovery of dark energy by the first generation of high-redshift
supernova surveys has generated enormous interest beyond cosmology and has
dramatic implications for fundamental physics. Distance measurements using
supernova explosions are the most direct probes of the expansion history of the
Universe, making them extremely useful tools to study the cosmic fabric and the
properties of gravity at the largest scales. The past decade has seen the
confirmation of the original results. Type Ia supernovae are among the leading
techniques to obtain high-precision measurements of the dark energy equation of
state parameter, and in the near future, its time dependence. The success of
these efforts depends on our ability to understand a large number of effects,
mostly of astrophysical nature, influencing the observed flux at Earth. The
frontier now lies in understanding if the observed phenomenon is due to vacuum
energy, albeit its unnatural density, or some exotic new physics. Future
surveys will address the systematic effects with improved calibration
procedures and provide thousands of supernovae for detailed studies.Comment: Invited review, Annual Review of Nuclear and Particle Science
(submitted version
A Variational Approach for Minimizing Lennard-Jones Energies
A variational method for computing conformational properties of molecules
with Lennard-Jones potentials for the monomer-monomer interactions is
presented. The approach is tailored to deal with angular degrees of freedom,
{\it rotors}, and consists in the iterative solution of a set of deterministic
equations with annealing in temperature. The singular short-distance behaviour
of the Lennard-Jones potential is adiabatically switched on in order to obtain
stable convergence. As testbeds for the approach two distinct ensembles of
molecules are used, characterized by a roughly dense-packed ore a more
elongated ground state. For the latter, problems are generated from natural
frequencies of occurrence of amino acids and phenomenologically determined
potential parameters; they seem to represent less disorder than was previously
assumed in synthetic protein studies. For the dense-packed problems in
particular, the variational algorithm clearly outperforms a gradient descent
method in terms of minimal energies. Although it cannot compete with a careful
simulating annealing algorithm, the variational approach requires only a tiny
fraction of the computer time. Issues and results when applying the method to
polyelectrolytes at a finite temperature are also briefly discussed.Comment: 14 pages, uuencoded compressed postscript fil
Detailed Abundances for the Old Population near the Galactic Center: I. Metallicity distribution of the Nuclear Star Cluster
We report the first high spectral resolution study of 17 M giants
kinematically confirmed to lie within a few parsecs of the Galactic Center,
using R=24,000 spectroscopy from Keck/NIRSPEC and a new linelist for the
infrared K band. We consider their luminosities and kinematics, which classify
these stars as members of the older stellar population and the central cluster.
We find a median metallicity of =-0.16 and a large spread from
approximately -0.3 to +0.3 (quartiles). We find that the highest metallicities
are [Fe/H]<+0.6, with most of the stars being at or below the Solar iron
abundance. The abundances and the abundance distribution strongly resembles
that of the Galactic bulge rather than disk or halo; in our small sample we
find no statistical evidence for a dependence of velocity dispersion on
metallicity.Comment: 18 pages, 14 figures, accepted for publication in A
- …