91 research outputs found

    Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spent hydrolysates from bioethanolic fermentation processes based on agricultural residues have potential as an abundant and inexpensive source of pentose sugars and acids that could serve as nutrients for industrial enzyme-producing microorganisms, especially filamentous fungi. However, the enzyme mixtures produced in such media are poorly defined. In this study, the secretome of <it>Trichoderma reesei </it>Rut C-30 grown either on a spent hydrolysate model medium (SHMM) or on a lactose-based standard medium (LBSM) was explored using proteomics.</p> <p>Results</p> <p>Our results show that both the SHMM and LBSM serve as excellent growth media for <it>T. reesei </it>Rut C-30. In total, 52 protein spots on 2-D gels were identified by using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and electrospray ionization liquid chromatography tandem mass spectrometry (ESI-LC MS/MS). As expected, a considerable number of the identified proteins were related to the degradation of lignocellulosic biomass. The enzyme production profiles in the two media were similar, but β-glucosidase and β-galactosidase were only produced in LBSM. The main cellobiohydrolases (Cel7A/Cel6A) and endoglucanases (Cel7B/Cel5A) were identified in both media and the cellobiohydrolases, i.e. Cel7A and Cel6A, were the most abundant cellulolytic enzymes. Moreover, both media can also serve as a potent inducer of xylanolytic enzymes. Several key enzymes involved in sugar assimilation and regulation of cellulase formation were identified, and were found to be differentially expressed in the two growth media.</p> <p>Conclusions</p> <p>This study not only provides a catalogue of the prevalent proteins secreted by <it>T. reesei </it>in the two media, but the results also suggest that production of hydrolytic enzymes using unconventional carbon sources, such as components in spent hydrolysates, deserves further attention in the future.</p

    Comparison of solid and liquid fractions of pretreated Norway spruce as reductants in LPMO-supported saccharification of cellulose

    Get PDF
    The role of lignin in enzymatic saccharification of cellulose involving lytic polysaccharide monooxygenase (LPMO) was investigated in experiments with the solid and liquid fractions of pretreated Norway spruce from a biorefinery demonstration plant using hydrothermal pretreatment and impregnation with sulfur dioxide. Pretreated biomass before and after enzymatic saccharification was characterized using HPAEC, HPLC, Py-GC/MS, 2D-HSQC NMR, FTIR, and SEM. Chemical characterization indicated that relatively harsh pretreatment conditions resulted in that the solid phase contained no or very little hemicellulose but considerable amounts of pseudo-lignin, and that the liquid phase contained a relatively high concentration (∼5 g/L) of lignin-derived phenolics. As judged from reactions continuously supplied with either air or nitrogen gas, lignin and lignin fragments from both the solid and the liquid phases efficiently served as reductants in LPMO-supported saccharification. When air was used to promote LPMO activity, the enzymatic conversion of cellulose after 72 h was 25% higher in reactions with pretreated solids and buffer, and 14% higher in reactions with pretreatment liquid and microcrystalline cellulose. Research in this area is useful for designing efficient saccharification steps in biochemical conversion of lignocellulosic biomass

    Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway.

    Get PDF
    Differences between the recombinant xylose-utilizing Saccharomyces cerevisiae strain TMB 3399 and the mutant strain TMB 3400, derived from TMB 3399 and displaying improved ability to utilize xylose, were investigated by using genome-wide expression analysis, physiological characterization, and biochemical assays. Samples for analysis were withdrawn from chemostat cultures. The characteristics of S. cerevisiae TMB 3399 and TMB 3400 grown on glucose and on a mixture of glucose and xylose, as well as of S. cerevisiae TMB 3400 grown on only xylose, were investigated. The strains were cultivated under chemostat conditions at a dilution rate of 0.1 h-1, with feeds consisting of a defined mineral medium supplemented with 10 g of glucose liter-1, 10 g of glucose plus 10 g of xylose liter-1 or, for S. cerevisiae TMB 3400, 20 g of xylose liter-1. S. cerevisiae TMB 3400 consumed 31% more xylose of a feed containing both glucose and xylose than S. cerevisiae TMB 3399. The biomass yields for S. cerevisiae TMB 3400 were 0.46 g of biomass g of consumed carbohydrate-1 on glucose and 0.43 g of biomass g of consumed carbohydrate-1 on xylose. A Ks value of 33 mM for xylose was obtained for S. cerevisiae TMB 3400. In general, the percentage error was <20% between duplicate microarray experiments originating from independent fermentation experiments. Microarray analysis showed higher expression in S. cerevisiae TMB 3400 than in S. cerevisiae TMB 3399 for (i) HXT5, encoding a hexose transporter; (ii) XKS1, encoding xylulokinase, an enzyme involved in one of the initial steps of xylose utilization; and (iii) SOL3, GND1, TAL1, and TKL1, encoding enzymes in the pentose phosphate pathway. In addition, the transcriptional regulators encoded by YCR020C, YBR083W, and YPR199C were expressed differently in the two strains. Xylose utilization was, however, not affected in strains in which YCR020C was overexpressed or deleted. The higher expression of XKS1 in S. cerevisiae TMB 3400 than in TMB 3399 correlated with higher specific xylulokinase activity in the cell extracts. The specific activity of xylose reductase and xylitol dehydrogenase was also higher for S. cerevisiae TMB 3400 than for TMB 3399, both on glucose and on the mixture of glucose and xylose

    Hybrid Aspen Expressing a Carbohydrate Esterase Family 5 Acetyl Xylan Esterase under Control of a Wood-Specific Promoter Shows Improved Saccharification

    Get PDF
    Fast-growing broad-leaf tree species can serve as feedstocks for production of bio-based chemicals and fuels through biochemical conversion of wood to monosaccharides. This conversion is hampered by the xylan acetylation pattern. To reduce xylan acetylation in the wood, the Hypocrea jecorina acetyl xylan esterase (HjAXE) from carbohydrate esterase (CE) family 5 was expressed in hybrid aspen under the control of the wood-specific PtGT43B promoter and targeted to the secretory pathway. The enzyme was predicted to deacetylate polymeric xylan in the vicinity of cellulose due to the presence of a cellulose-binding module. Cell-wall-bound protein fractions from developing wood of transgenic plants were capable of releasing acetyl from finely ground wood powder, indicative of active AXE present in cell walls of these plants, whereas no such activity was detected in wild-type plants. The transgenic lines grew in height and diameter as well as wild-type trees, whereas their internodes were slightly shorter, indicating higher leaf production. The average acetyl content in the wood of these lines was reduced by 13%, mainly due to reductions in di-acetylated xylose units, and in C-2 and C-3 mono-acetylated xylose units. Analysis of soluble cell wall polysaccharides revealed a 4% reduction in the fraction of xylose units and an 18% increase in the fraction of glucose units, whereas the contents of cellulose and lignin were not affected. Enzymatic saccharification of wood from transgenic plants resulted in 27% higher glucose yield than for wild-type plants. Brunauer-Emmett-Teller (BET) analysis and Simons' staining pointed toward larger surface area and improved cellulose accessibility for wood from transgenic plants compared to wood from wild-type plants, which could be achieved by HjAXE deacetylating xylan bound to cellulose. The results show that CE5 family can serve as a source of enzymes for in planta reduction of recalcitrance to saccharification.Peer reviewe

    Impact of xylan on field productivity and wood saccharification properties in aspen

    Get PDF
    Xylan that comprises roughly 25% of hardwood biomass is undesirable in biorefinery applications involving saccharification and fermentation. Efforts to reduce xylan levels have therefore been made in many species, usually resulting in improved saccharification. However, such modified plants have not yet been tested under field conditions. Here we evaluate the field performance of transgenic hybrid aspen lines with reduced xylan levels and assess their usefulness as short-rotation feedstocks for biorefineries. Three types of transgenic lines were tested in four-year field tests with RNAi constructs targeting either Populus GT43 clades B and C (GT43BC) corresponding to Arabidopsis clades IRX9 and IRX14, respectively, involved in xylan backbone biosynthesis, GATL1.1 corresponding to AtGALT1 involved in xylan reducing end sequence biosynthesis, or ASPR1 encoding an atypical aspartate protease. Their productivity, wood quality traits, and saccharification efficiency were analyzed. The only lines differing significantly from the wild type with respect to growth and biotic stress resistance were the ASPR1 lines, whose stems were roughly 10% shorter and narrower and leaves showed increased arthropod damage. GT43BC lines exhibited no growth advantage in the field despite their superior growth in greenhouse experiments. Wood from the ASPR1 and GT43BC lines had slightly reduced density due to thinner cell walls and, in the case of ASPR1, larger cell diameters. The xylan was less extractable by alkali but more hydrolysable by acid, had increased glucuronosylation, and its content was reduced in all three types of transgenic lines. The hemicellulose size distribution in the GALT1.1 and ASPR1 lines was skewed towards higher molecular mass compared to the wild type. These results provide experimental evidence that GATL1.1 functions in xylan biosynthesis and suggest that ASPR1 may regulate this process. In saccharification without pretreatment, lines of all three constructs provided 8-11% higher average glucose yields than wild-type plants. In saccharification with acid pretreatment, the GT43BC construct provided a 10% yield increase on average. The best transgenic lines of each construct are thus predicted to modestly outperform the wild type in terms of glucose yields per hectare. The field evaluation of transgenic xylan-reduced aspen represents an important step towards more productive feedstocks for biorefineries

    Effect of an education programme for patients with osteoarthritis in primary care - a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoarthritis (OA) is a degenerative disease, considered to be one of the major public health problems. Research suggests that patient education is feasible and valuable for achieving improvements in quality of life, in function, well-being and improved coping. Since 1994, Primary Health Care in Malmö has used a patient education programme directed towards OA. The aim of this study was to evaluate the effects of this education programme for patients with OA in primary health care in terms of self-efficacy, function and self-perceived health.</p> <p>Method</p> <p>The study was a single-blind, randomized controlled trial (RCT) in which the EuroQol-5D and Arthritis self-efficacy scale were used to measure self-perceived health and self-efficacy and function was measured with Grip Ability Test for the upper extremity and five different functional tests for the lower extremity.</p> <p>Results</p> <p>We found differences between the intervention group and the control group, comparing the results at baseline and after 6 months in EuroQol-5D (p < 0.001) and in standing one leg eyes closed (p = 0.02) in favour of the intervention group. No other differences between the groups were found.</p> <p>Conclusion</p> <p>This study has shown that patient education for patients with osteoarthritis is feasible in a primary health care setting and can improve self-perceived health as well as function in some degree, but not self-efficacy. Further research to investigate the effect of exercise performance on function, as well as self-efficacy is warranted.</p> <p>Trial registration</p> <p>The trial is registered with ClinicalTrials.gov. Registration number: NCT00979914</p
    corecore