12 research outputs found

    Surface properties of particles emitted from selected coal-fired heating plants and electric power stations in Poland : preliminary results

    Get PDF
    The surface properties of particles emitted from six selected coal-fi red power and heating plants in Poland have been studied in this work for the fi rst time. Samples were collected beyond the control systems. Surface composition of the size-distributed particles was obtained by photoelectron spectroscopy (XPS). The refl ection of the smallest, submicron particles was also measured to calculate their specifi c/mass absorption. The surface layer of the emitted particles was clearly dominated by oxygen, followed by silicon and carbon. The sum of the relative concentration of these elements was between 85.1% and 91.1% for coarse particles and 71.8–93.4% for fi ne/submicron particles. Aluminum was typically the fourth or fi fth, or at least the sixth most common element. The mass absorption of the submicron particles emitted from the studied plants ranged from 0.02 m2g-1 to 0.03 m2g-1. Only specifi c absorption obtained for the “Nowy Wirek” heating plant was signifi cantly higher than in other studied plants probably because the obsolete fi re grate is used in this heating plant. The obtained results suggest that the power/heating-plant-emitted fi ne particles contain less carbonaceous material/elemental carbon on their surfaces than those that are typical in urban air

    Exposure to PM4 in homes with tobacco smoke in and around Katowice, Poland

    Get PDF
    The results of a PM4 (airborne particles with an aerodynamic diameter less than 4 m) study in Katowice and in the surrounding area in homes with and without environmental tobacco smoke (ETS) are presented. It was found that the average concentration of PM4 inside the homes with ETS was between 126 g m3 (in Jaworzno) and 208 g m3 (in Katowice)—significantly higher than in the homes without smokers (55–65 g m3). The mean of the indoor to outdoor ratios (I/O) for PM4 varied greatly, ranging from 0.6 in the apartments without smokers in Katowice to 5.2 in the homes with smokers in Jaworzno. The highly polluted by ETS indoor air causes children aged 14–15 living in these homes to inhale from 2.5 to 6.6 mg of PM4 more per day than their peers living in non-ETS homes. X-ray photoelectron spectroscopy (XPS) was used to determine the surface chemical composition of the studied indoor airborne particles. Carbon, including elemental carbon, and oxygen-containing species dominated the particulate surface, with traces of Si, N, S, Na, Al, Zn, and K present. The surface layer of PM4 from the homes with ETS contains significantly more carbon and less oxygen than the airborne particles collected in the homes without smokers, which can be explained by the high emission of carbon during tobacco smoking

    Exposure to PM4 in Homes with Tobacco Smoke in and around Katowice, Poland

    No full text
    The results of a PM4 (airborne particles with an aerodynamic diameter less than 4 µm) study in Katowice and in the surrounding area in homes with and without environmental tobacco smoke (ETS) are presented. It was found that the average concentration of PM4 inside the homes with ETS was between 126 µg m−3 (in Jaworzno) and 208 µg m−3 (in Katowice)—significantly higher than in the homes without smokers (55–65 µg m−3). The mean of the indoor to outdoor ratios (I/O) for PM4 varied greatly, ranging from 0.6 in the apartments without smokers in Katowice to 5.2 in the homes with smokers in Jaworzno. The highly polluted by ETS indoor air causes children aged 14–15 living in these homes to inhale from 2.5 to 6.6 mg of PM4 more per day than their peers living in non-ETS homes. X-ray photoelectron spectroscopy (XPS) was used to determine the surface chemical composition of the studied indoor airborne particles. Carbon, including elemental carbon, and oxygen-containing species dominated the particulate surface, with traces of Si, N, S, Na, Al, Zn, and K present. The surface layer of PM4 from the homes with ETS contains significantly more carbon and less oxygen than the airborne particles collected in the homes without smokers, which can be explained by the high emission of carbon during tobacco smoking

    Surface Properties of Particles Emitted from Selected Coal-Fired Heating Plants and Electric Power Stations in Poland: Preliminary Results

    No full text
    The surface properties of particles emitted from six selected coal-fired power and heating plants in Poland have been studied in this work for the first time. Samples were collected beyond the control systems. Surface composition of the size-distributed particles was obtained by photoelectron spectroscopy (XPS)

    Consideration on the health risk reduction related to attainment of the new particulate matter standards in Poland: A top-down policy risk assessment approach

    No full text
    Policies can influence health of a population in various ways. Numerous epidemiological studies supported by toxicological investigations demonstrate a positive association between ambient concentrations of airborne particulate matter and increased adverse cardio-respiratory events, including morbidity and mortality. The aim of this paper was to present the concept of the top-down health policy risk assessment approach model developed to estimate the expected health risk reduction associated with policy aiming at attaining the new particulate matter ≤ 10 μm in diameter (PM10) standards in Poland. The top-down approach guides the analysis of causal chains from the policy to health outcomes. In this case study we tried to estimate the predicted health effects of the policy change over the past 20 years. Since Polish annual standard for PM10 changed from 50 μg/m3 in 1990 to 40 μg/m3 in 2010, we calculated the relative risk associated with decreasing PM10 in diameter to 10 μg/m3 in the annual level of PM10 for 6 adverse health effects. The relative risk slightly decreased for almost all adverse health effects, which means that the relative decrease in the incidence of health effects from the baseline incidence should range from about 0.5–0.6% for heart disease admissions to > 1% for respiratory admissions. The obtained results indicate that implementation of the new ambient air standards could influence improvement of the health status of Polish population. A top-down policy health risk assessment model can be one of the main tools in this process, providing harmonized guidance how to seek evidence-based information, which could serve policy-makers

    Organic and elemental carbon bound to particulate matter in the air of printing office and beauty salon

    No full text
    The aim of this study was to determine the role of internal sources of emissions on the concentrations of total suspended particulate matter (TSP) and its sub-fraction, so-called respirable PM (PM4; fraction of particles with particle size ≤ 4 µm) and to estimate to which extent those emissions participate in the formation of PM-bound elemental (EC) and organic (OC) carbon in two facilities - one beauty salon and one printing office located in Bytom (Upper Silesia, Poland). The average concentration of PM in the printing office and beauty salon during the 10-day measurement period was 10 and 4 (PM4) and 8 and 3 (TSP) times greater than the average concentration of PM fractions recorded in the same period in the atmospheric air; it was on average: 204 µg/m3 (PM4) and 319 µg/m3 (TSP) and 93 µg/m3 (PM4) and 136 µg/m3 (TSP), respectively. OC concentrations determined in the printing office were 38 µg/m3 (PM4) and 56 µg/m3 (TSP), and those referring to EC: 1.8 µg/m3 (PM4) and 3.5 µg/m3 (TSP). In the beauty salon the average concentration of OC for PM4 and TSP were 58 and 75 µg/m3, respectively and in case of EC - 3.1 and 4.7 µg/m3, respectively. The concentrations of OC and EC within the those facilities were approximately 1.7 (TSP-bound EC, beauty salon) to 4.7 (TSP-bound OC, printing office) times higher than the average atmospheric concentrations of those compounds measured in both PM fractions at the same time. In both facilities the main source of TSP-and PM4-bound OC in the indoor air were the chemicals - solvents, varnishes, paints, etc

    Organic and elemental carbon bound to particulate matter in the air of printing office and beauty salon

    No full text
    The aim of this study was to determine the role of internal sources of emissions on the concentrations of total suspended particulate matter (TSP) and its sub-fraction, so-called respirable PM (PM4; fraction of particles with particle size ≤ 4 µm) and to estimate to which extent those emissions participate in the formation of PM-bound elemental (EC) and organic (OC) carbon in two facilities - one beauty salon and one printing office located in Bytom (Upper Silesia, Poland). The average concentration of PM in the printing office and beauty salon during the 10-day measurement period was 10 and 4 (PM4) and 8 and 3 (TSP) times greater than the average concentration of PM fractions recorded in the same period in the atmospheric air; it was on average: 204 µg/m3 (PM4) and 319 µg/m3 (TSP) and 93 µg/m3 (PM4) and 136 µg/m3 (TSP), respectively. OC concentrations determined in the printing office were 38 µg/m3 (PM4) and 56 µg/m3 (TSP), and those referring to EC: 1.8 µg/m3 (PM4) and 3.5 µg/m3 (TSP). In the beauty salon the average concentration of OC for PM4 and TSP were 58 and 75 µg/m3, respectively and in case of EC - 3.1 and 4.7 µg/m3, respectively. The concentrations of OC and EC within the those facilities were approximately 1.7 (TSP-bound EC, beauty salon) to 4.7 (TSP-bound OC, printing office) times higher than the average atmospheric concentrations of those compounds measured in both PM fractions at the same time. In both facilities the main source of TSP-and PM4-bound OC in the indoor air were the chemicals - solvents, varnishes, paints, etc

    Organic and elemental carbon bound to particulate matter in the air of printing office and beauty salon

    No full text
    The aim of this study was to determine the role of internal sources of emissions on the concentrations of total suspended particulate matter (TSP) and its sub-fraction, so-called respirable PM (PM4; fraction of particles with particle size ≤ 4 µm) and to estimate to which extent those emissions participate in the formation of PM-bound elemental (EC) and organic (OC) carbon in two facilities - one beauty salon and one printing office located in Bytom (Upper Silesia, Poland). The average concentration of PM in the printing office and beauty salon during the 10-day measurement period was 10 and 4 (PM4) and 8 and 3 (TSP) times greater than the average concentration of PM fractions recorded in the same period in the atmospheric air; it was on average: 204 µg/m3 (PM4) and 319 µg/m3 (TSP) and 93 µg/m3 (PM4) and 136 µg/m3 (TSP), respectively. OC concentrations determined in the printing office were 38 µg/m3 (PM4) and 56 µg/m3 (TSP), and those referring to EC: 1.8 µg/m3 (PM4) and 3.5 µg/m3 (TSP). In the beauty salon the average concentration of OC for PM4 and TSP were 58 and 75 µg/m3, respectively and in case of EC - 3.1 and 4.7 µg/m3, respectively. The concentrations of OC and EC within the those facilities were approximately 1.7 (TSP-bound EC, beauty salon) to 4.7 (TSP-bound OC, printing office) times higher than the average atmospheric concentrations of those compounds measured in both PM fractions at the same time. In both facilities the main source of TSP-and PM4-bound OC in the indoor air were the chemicals - solvents, varnishes, paints, etc

    Assessment of Bacterial Aerosol in a Preschool, Primary School and High School in Poland

    No full text
    The issue of healthy educational buildings is a global concern because children are particularly at risk of lung damage and infection caused by poor indoor air quality (IAQ). This article presents the results of a preliminary study of the concentration and size distribution of bacterial aerosol in three educational buildings: a preschool, primary school, and high school. Sampling was undertaken in the classrooms with an Andersen six-stage impactor (with aerodynamic cut-off diameters of 7.0, 4.7, 3.3, 2.1, 1.1 and 0.65 μm) during spring 2016 and 2017, as well as the outside of the buildings. After incubation, bioaerosol particles captured on nutrient media on Petri dishes were quantitatively evaluated and qualitatively identified. The highest average concentration of bacterial aerosol was inside the primary school building (2205 CFU/m3), whereas the lowest average concentration of indoor culturable bacteria was observed in the high school building (391 CFU/m3). Using the obtained data, the exposure dose (ED) of the bacterial aerosol was estimated for children attending each educational level. The most frequently occurring species in the sampled bacterial aerosol were Gram-positive cocci in the indoor environment and Gram-positive rod-forming endospores in the outdoor environment
    corecore