5 research outputs found

    Pretherapeutic Functional Imaging Allows Prediction of Head Tremor Arrest After Thalamotomy for Essential Tremor: The Role of Altered Interconnectivity Between Thalamolimbic and Supplementary Motor Circuits

    No full text
    OBJECTIVE: To correlate pretherapeutic resting-state functional magnetic resonance imaging (rs-fMRI) measures with pretherapeutic head tremor presence and/or further improvement 1 year after stereotactic radiosurgical thalamotomy (SRS-T) for essential tremor (ET). METHODS: We prospectively collected head tremor scores (range, 0-3) and rs-fMRI data for a cohort of 17 consecutive ET patients in pretherapeutic and 1 year after SRS-T states. We additionally acquired rs-fMRI data for a healthy control (HC) group (n~= 12). Group-level independent component analysis (n~= 17 for pretherapeutic rs-fMRI) was applied to decompose neuroimaging data into 20 large-scale brain networks using a standard approach. Through spatial regression, we projected 1 year after SRS-T and HC rs-fMRI time points, on the same 20 brain networks. RESULTS: Pretherapeutic interconnectivity (IC) strength between the network including bilateral thalamus and limbic system with left supplementary motor area predicted head tremor improvement at 1 year after SRS-T (family-wise corrected P < 0.001, cluster size Kc~= 146). For the statistically significant cluster, IC strength was strongest in HCs (mean, 4.6; median, 3.8) compared with pre- (mean, 0.1; median, 0.2) or posttherapeutic (mean,~-0.2; median, 0.09) states. CONCLUSIONS: Baseline measures of IC between bilateral thalamus and limbic system with left supplementary motor area may predict head tremor arrest after thalamotomy. However, procedures such as SRS-T, for this particular clinical feature, do not align patients to HCs in terms of functional brain connectivity. We postulate that supplementary motor area is modulating head tremor appearance, by abnormal connectivity with the thalamolimbic system

    Pretherapeutic Motor Thalamus Resting-State Functional Connectivity with Visual Areas Predicts Tremor Arrest After Thalamotomy for Essential Tremor: Tracing the Cerebello-thalamo-visuo-motor Network

    No full text
    BACKGROUND: Essential tremor (ET) is a common movement disorder. Resting-state functional magnetic resonance imaging is a noninvasive neuroimaging method acquired in absence of task. OBJECTIVE: Our study aimed to correlate pretherapeutic ventrolateral thalamus functional connectivity (FC) with clinical results 1 year after stereotactic radiosurgical thalamotomy (SRS-T) for drug-resistant ET. Data from 12 healthy control individuals were additionally included. METHODS: Resting state was acquired for 17 consecutive (right-handed) patients, before and 1 year after left unilateral SRS-T. Standard tremor scores were evaluated pretherapeutically and 1 year after SRS-T. Tremor network was investigated using region of interest, left ventrolateral ventral (VLV) cluster, obtained from pretherapeutic diffusion magnetic resonance imaging. Seed-based FC was obtained as correlations between the time courses of the VLV and that of every other voxel. The seed-connectivity maps were obtained pretherapeutically and correlated across all patients with clinical outcome 1 year after SRS-T. One-year magnetic resonance signature volume was always located inside VLV and did not correlate with reported seed-FC measures (P > 0.05). RESULTS: We report statistically significant correlations between pretherapeutic VLV FC with clinical outcome for 1) right visual association area (Brodmann area, BA19) predicting 1 year activities of daily living decrease (Punc~= 0.02); 2) left fusiform gyrus (BA37) predicting 1 year head tremor score improvement (Punc~= 0.04); and 3) posterior cingulate (left BA23, Puncor~= 0.009), lateral temporal cortex (right BA21, Punc~= 0.02) predicting time to tremor arrest. CONCLUSIONS: Our results suggest that pretherapeutic resting-state seed-FC of left VLV predicts tremor arrest after SRS-T for ET. Visual areas are identified as the main regions in this correlation
    corecore