8 research outputs found

    New Caffeic Acid Phenylethyl Ester Analogs Bearing Substituted Triazole: Synthesis and Structure-Activity Relationship Study towards 5-Lipoxygenase Inhibition

    Get PDF
    Leukotrienes are biosynthesized by the conversion of arachidonic acid by 5-Lipoxygenase and play a key role in many inflammatory disorders. Inspired by caffeic acid phenylethyl ester (CAPE) (2) and an analog carrying a triazole substituted by cinnamoyl and 5-LO inhibitors recently reported by our team, sixteen new CAPE analogs bearing substituted triazole were synthesized by copper catalyzed Huisgen 1,3-dipolar cycloaddition. Compound 10e, an analog bearing p-CF3 phenethyl substituted triazole, was equivalent to CAPE (2) but clearly surpassed Zileuton (2), the only approved 5-LO inhibitor. Substitution of the phenethyl moiety by cyclohexylethyl, as with 12g, clearly increased 5-LO inhibition which confirms the importance of hydrophobic interactions. Molecular docking revealed new hydrogen bonds and π-π interactions between the enzyme and some of the investigated compounds. Overall, this work highlights the relevance of exploring polyphenolic compounds as leukotrienes biosynthesis inhibitors

    Locomotor activity as an effective measure of the severity of inflammatory arthritis in a mouse model.

    No full text
    ObjectiveMouse models are valuable in preclinical studies of inflammatory arthritis. However, current methods for measuring disease severity or responses to treatment are not optimal. In this study a smart cage system using multiple sensors to measure locomotor activity was evaluated in the K/BxN serum transfer model of inflammatory arthritis.MethodsArthritis was induced in C57BL/6 mice with injections of K/BxN serum. Clinical index and ankle thickness were measured for 14 days. Locomotor activity was measured in smart cages for 23 h periods on Days 0, 7, and 13. The same measurements were taken in mice consuming diets supplemented or not with fish oil to evaluate a preventative treatment.ResultsInitiation, peak and resolution phases of disease could be measured with the smart cages. Locomotor activity including speed, travel distance, number of active movements and rear movements were all significantly lower on Days 7-8 of illness (peak) compared to Days 0 and 13-14 (resolution) (one-way repeated measures analyses, pConclusionThe measurement of locomotor activity provided a more detailed evaluation of the impact of inflammatory arthritis on animal well-being and mobility than that provided by measuring clinical index and ankle thickness, and could be a valuable tool in preclinical studies of inflammatory arthritis

    Clicked Cinnamic/Caffeic Esters and Amides as Radical Scavengers and 5-Lipoxygenase Inhibitors

    Get PDF
    5-Lipoxygenase (5-LO) is the key enzyme responsible for the conversion of arachidonic acid to leukotrienes, a class of lipid mediators implicated in inflammatory disorders. In this paper, we describe the design, synthesis, and preliminary activity studies of novel clicked caffeic esters and amides as radical scavengers and 5-LO inhibitors. From known 5-LO inhibitor 3 as a lead, cinnamic esters 8a–h and amides 9a–h as well as caffeic esters 15a–h and amides 16a–h were synthesized by Cu(I)-catalyzed [1,3]-dipolar cycloaddition with the appropriate azide precursors and terminal alkynes. All caffeic analogs are proved to be good radical scavengers (IC50: 10–20 μM). Esters 15g and 15f possessed excellent 5-LO inhibition activity in HEK293 cells and were equipotent with the known 5-LO inhibitor CAPE and more potent than Zileuton. Several synthesized esters possess activities rivaling Zileuton in stimulated human polymorphonuclear leukocytes

    Ketone Analog of Caffeic Acid Phenethyl Ester Exhibits Antioxidant Activity via Activation of ERK-Dependent Nrf2 Pathway

    No full text
    Due to their robust antioxidant properties, phenolic acids and their analogs are extensively studied for their ability to activate cellular antioxidant pathways, including nuclear factor (erythroid-derived-2)-like 2 (Nrf2)-antioxidant response element (ARE) pathway. Caffeic, ferulic, and gallic acid are well-studied members of phenolic acids. Constant efforts are made to improve the pharmacological effects and bioavailability of phenolic acids by synthesizing their chemical derivatives. This study determines how modifications of the chemical structure of these phenolic acids affect their antioxidant and cytoprotective activities. We have selected six superior antioxidant compounds (12, 16, 26, 35, 42, and 44) of the 48 caffeic acid phenethyl ester (CAPE) analogs based on their ability to scavenge free radicals in vitro using standard antioxidant assays. These compounds exhibited minimal toxicity as indicated by cell cycle and cytochrome C release assays. Among these compounds, 44, the ketone analog of CAPE, exhibited the ability to increase p-Nrf2 (Ser40) levels in 293T cells (p < 0.05). Further, 44, exhibited its antioxidant effect in Drosophila Melanogaster as indicated by an increase in mRNA levels of Nrf2 and GPx (p < 0.05). Finally, the ability of 44 to activate the antioxidant pathway was abolished in the presence of extracellular signal-regulated kinase (ERK) inhibitor in 293T cells. Thus, we identify 44, the ketone analog of CAPE, as a unique antioxidant molecule with the function of ERK-mediated Nrf2 activation

    Responses of recurrent nets of asymmetric ON and OFF cells

    No full text
    A neural field model of ON and OFF cells with all-to-all inhibitory feedback is investigated. External spatiotemporal stimuli drive the ON and OFF cells with, respectively, direct and inverted polarity. The dynamic differences between networks built of ON and OFF cells (“ON/OFF”) and those having only ON cells (“ON/ON”) are described for the general case where ON and OFF cells can have different spontaneous firing rates; this asymmetric case is generic. Neural responses to nonhomogeneous static and time-periodic inputs are analyzed in regimes close to and away from self-oscillation. Static stimuli can cause oscillatory behavior for certain asymmetry levels. Time-periodic stimuli expose dynamical differences between ON/OFF and ON/ON nets. Outside the stimulated region, we show that ON/OFF nets exhibit frequency doubling, while ON/ON nets cannot. On the other hand, ON/ON networks show antiphase responses between stimulated and unstimulated regions, an effect that does not rely on specific receptive field circuitry. An analysis of the resonance properties of both net types reveals that ON/OFF nets exhibit larger response amplitude. Numerical simulations of the neural field models agree with theoretical predictions for localized static and time-periodic forcing. This is also the case for simulations of a network of noisy integrate-and-fire neurons. We finally discuss the application of the model to the electrosensory system and to frequency-doubling effects in retina
    corecore