2 research outputs found

    Bimodal control of fear-coping strategies by CB₁ cannabinoid receptors

    No full text
    International audienceTo maximize their chances of survival, animals need to rapidly and efficiently respond to aversive situations. These responses can be classified as active or passive and depend on the specific nature of threats, but also on individual fear coping styles. In this study, we show that the control of excitatory and inhibitory brain neurons by type-1 cannabinoid (CB₁) receptors is a key determinant of fear coping strategies in mice. In classical fear conditioning, a switch between initially predominant passive fear responses (freezing) and active behaviors (escape attempts and risk assessment) develops over time. Constitutive genetic deletion of CB₁ receptors in CB₁⁻/⁻ mice disrupted this pattern by favoring passive responses. This phenotype can be ascribed to endocannabinoid control of excitatory neurons, because it was reproduced in conditional mutant mice lacking CB₁ receptors from cortical glutamatergic neurons. CB₁ receptor deletion from GABAergic brain neurons led to the opposite phenotype, characterized by the predominance of active coping. The CB₁ receptor agonist Δâč-tetrahydrocannabinol exerted a biphasic control of fear coping strategies, with lower and higher doses favoring active and passive responses, respectively. Finally, viral re-expression of CB₁ receptors in the amygdala of CB₁⁻/⁻ mice restored the normal switch between the two coping strategies. These data strongly suggest that CB₁ receptor signaling bimodally controls the spontaneous adoption of active or passive coping strategies in individuals. This primary function of the endocannabinoid system in shaping individual behavioral traits should be considered when studying the mechanisms of physiological and pathological fear

    Impairment of Glycolysis-Derived l-Serine Production in Astrocytes Contributes to Cognitive Deficits in Alzheimer’s Disease

    No full text
    International audienceAlteration of brain aerobic glycolysis is often observed early in the course of Alzheimer's disease (AD). Whether and how such metabolic dysregulation contributes to both synaptic plasticity and behavioral deficits in AD is not known. Here, we show that the astrocytic l-serine biosynthesis pathway, which branches from glycolysis, is impaired in young AD mice and in AD patients. l-serine is the precursor of d-serine, a co-agonist of synaptic NMDA receptors (NMDARs) required for synaptic plasticity. Accordingly, AD mice display a lower occupancy of the NMDAR co-agonist site as well as synaptic and behavioral deficits. Similar deficits are observed following inactivation of the l-serine synthetic pathway in hippocampal astrocytes, supporting the key role of astrocytic l-serine. Supplementation with l-serine in the diet prevents both synaptic and behavioral deficits in AD mice. Our findings reveal that astrocytic glycolysis controls cognitive functions and suggest oral l-serine as a ready-to-use therapy for AD
    corecore