32 research outputs found

    Fischer–Tropsch Synthesis Over Zr-Promoted Co/γ-Al2O3 Catalysts

    Get PDF
    Two Zr-modified alumina supports were synthetized containing the same amount of Zr but a different distribution of this modifier over the alumina surface. These supports, together with the unmodified alumina carrier, were used to prepare three cobalt-based catalysts which were characterized and tested under relevant Fischer–Tropsch conditions. The three catalysts presented very similar porosity and cobalt dispersion. The addition of Zr nor its distribution enhanced the catalyst reducibility. The catalyst activity was superior when using a carrier consisting of large ZrO2 islands over the alumina surface. The use of a carrier with a homogeneous Zr distribution had however, a detrimental effect. Moreover, a faster initial deactivation rate was observed for the Zr-promoted catalysts, fact that may explain this contradictory effect of Zr on activity. Finally, the addition of Zr showed a clear enhancement of the selectivity to long chain hydrocarbons and ethylene, especially when Zr was well dispersed

    Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia

    Get PDF
    Despite extensive insights into the underlying genetics and biology of acute myeloid leukemia (AML), overall survival remains poor and new therapies are needed. We found that casein kinase 1 α (Csnk1a1), a serine-threonine kinase, is essential for AML cell survival in vivo. Normal hematopoietic stem and progenitor cells (HSPCs) were relatively less affected by shRNA-mediated knockdown of Csnk1a1. To identify downstream mediators of Csnk1a1 critical for leukemia cells, we performed an in vivo pooled shRNA screen and gene expression profiling. We found that Csnk1a1 knockdown results in decreased Rps6 phosphorylation, increased p53 activity, and myeloid differentiation. Consistent with these observations, p53-null leukemias were insensitive to Csnk1a1 knockdown. We further evaluated whether D4476, a casein kinase 1 inhibitor, would exhibit selective antileukemic effects. Treatment of leukemia stem cells (LSCs) with D4476 showed highly selective killing of LSCs over normal HSPCs. In summary, these findings demonstrate that Csnk1a1 inhibition causes reduced Rps6 phosphorylation and activation of p53, resulting in selective elimination of leukemia cells, revealing Csnk1a1 as a potential therapeutic target for the treatment of AML

    In Vivo RNAi Screening Identifies a Leukemia-Specific Dependence on Integrin Beta 3 Signaling

    Get PDF
    We used an in vivo small hairpin RNA (shRNA) screening approach to identify genes that are essential for MLL-AF9 acute myeloid leukemia (AML). We found that Integrin Beta 3 (Itgb3) is essential for murine leukemia cells in vivo and for human leukemia cells in xenotransplantation studies. In leukemia cells, Itgb3 knockdown impaired homing, downregulated LSC transcriptional programs, and induced differentiation via the intracellular kinase Syk. In contrast, loss of Itgb3 in normal hematopoietic stem and progenitor cells did not affect engraftment, reconstitution, or differentiation. Finally, using an Itgb3 knockout mouse model, we confirmed that Itgb3 is dispensable for normal hematopoiesis but is required for leukemogenesis. Our results establish the significance of the Itgb3 signaling pathway as a potential therapeutic target in AML.National Institutes of Health (U.S.) (Harvard Stem Cell Institute. GlaxoSmithKline. Grant P01 CA108631)National Institutes of Health (U.S.) (Harvard Stem Cell Institute. GlaxoSmithKline. Grant RC1 CA145229)National Institutes of Health (U.S.) (Harvard Stem Cell Institute. GlaxoSmithKline. Grant R01 CA140292)National Institutes of Health (U.S.) (Harvard Stem Cell Institute. GlaxoSmithKline. Grant CA148180

    SOCS2 is dispensable for BCR/ABL1-induced chronic myeloid leukemia-like disease and for normal hematopoietic stem cell function

    Get PDF
    Suppressor of cytokine signaling 2 (SOCS2) is known as a feedback inhibitor of cytokine signaling and is highly expressed in primary bone marrow (BM) cells from patients with chronic myeloid leukemia (CML). However, it has not been established whether SOCS2 is involved in CML, caused by the BCR/ABL1 fusion gene, or important for normal hematopoietic stem cell (HSC) function. In this study, we demonstrate that although Socs2 was found to be preferentially expressed in long-term HSCs, Socs2-deficient HSCs were indistinguishable from wild-type HSCs when challenged in competitive BM transplantation experiments. Furthermore, by using a retroviral BCR/ABL1-induced mouse model of CML, we demonstrate that SOCS2 is dispensable for the induction and propagation of the disease, suggesting that the SOCS2-mediated feedback regulation of the JAK/STAT pathway is deficient in BCR/ABL1-induced CML.N Hansen, H Ågerstam, M Wahlestedt, N Landberg, M Askmyr, M Ehinger, M Rissler, H Lilljebjörn, P Johnels, J Ishiko, J V Melo, W S Alexander, D Bryder, M Järås, and T Fioreto

    Sol-gel integrated protein microarray for high-resolution signal readout of psa (prostate specific antigen) in clinical samples

    No full text
    In this study, we demonstrate a new protein microarray technology for highly sensitive detection of PSA (prostate caser specific antigen) in scrum samples. Using the optically active sol-gel nanocomposites, which can hold capturing probes in native and surface morphology tailored porous silicon, purified PSA (Prostate Specific Antigen) in human female serum was assessed by FlTC-antiPSA in broad dynamic range of the sandwich (1 pg/mL to Ing/mL). Additionally, we tested reverse phase assay using our developed system, which purified PSA imbedded in sol-gel and FITC labeled its counter antibody was accessed. Dynamic range was 60 fg/mL to 6ng/mL. Our concept can allow the measurement oflow amount of PSA at pg/ml range and thus, it is possible to do relative quantification for marker protein as well
    corecore