51 research outputs found

    Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML

    Get PDF
    Leukemia stem cells (LSCs) have the capacity to self-renew and propagate disease upon serial transplantation in animal models, and elimination of this cell population is required for curative therapies. Here, we describe a series of pooled, in vivo RNAi screens to identify essential transcription factors (TFs) in a murine model of acute myeloid leukemia (AML) with genetically and phenotypically defined LSCs. These screens reveal the heterodimeric, circadian rhythm TFs Clock and Bmal1 as genes required for the growth of AML cells in vitro and in vivo. Disruption of canonical circadian pathway components produces anti-leukemic effects, including impaired proliferation, enhanced myeloid differentiation, and depletion of LSCs. We find that both normal and malignant hematopoietic cells harbor an intact clock with robust circadian oscillations, and genetic knockout models reveal a leukemia-specific dependence on the pathway. Our findings establish a role for the core circadian clock genes in AML.National Institutes of Health (U.S.) (Grant P01 CA066996)National Institutes of Health (U.S.) (Grant R01 HL082945)National Cancer Institute (U.S.) (Grant P30-CA14051

    Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia

    Get PDF
    Despite extensive insights into the underlying genetics and biology of acute myeloid leukemia (AML), overall survival remains poor and new therapies are needed. We found that casein kinase 1 α (Csnk1a1), a serine-threonine kinase, is essential for AML cell survival in vivo. Normal hematopoietic stem and progenitor cells (HSPCs) were relatively less affected by shRNA-mediated knockdown of Csnk1a1. To identify downstream mediators of Csnk1a1 critical for leukemia cells, we performed an in vivo pooled shRNA screen and gene expression profiling. We found that Csnk1a1 knockdown results in decreased Rps6 phosphorylation, increased p53 activity, and myeloid differentiation. Consistent with these observations, p53-null leukemias were insensitive to Csnk1a1 knockdown. We further evaluated whether D4476, a casein kinase 1 inhibitor, would exhibit selective antileukemic effects. Treatment of leukemia stem cells (LSCs) with D4476 showed highly selective killing of LSCs over normal HSPCs. In summary, these findings demonstrate that Csnk1a1 inhibition causes reduced Rps6 phosphorylation and activation of p53, resulting in selective elimination of leukemia cells, revealing Csnk1a1 as a potential therapeutic target for the treatment of AML

    In Vivo RNAi Screening Identifies a Leukemia-Specific Dependence on Integrin Beta 3 Signaling

    Get PDF
    We used an in vivo small hairpin RNA (shRNA) screening approach to identify genes that are essential for MLL-AF9 acute myeloid leukemia (AML). We found that Integrin Beta 3 (Itgb3) is essential for murine leukemia cells in vivo and for human leukemia cells in xenotransplantation studies. In leukemia cells, Itgb3 knockdown impaired homing, downregulated LSC transcriptional programs, and induced differentiation via the intracellular kinase Syk. In contrast, loss of Itgb3 in normal hematopoietic stem and progenitor cells did not affect engraftment, reconstitution, or differentiation. Finally, using an Itgb3 knockout mouse model, we confirmed that Itgb3 is dispensable for normal hematopoiesis but is required for leukemogenesis. Our results establish the significance of the Itgb3 signaling pathway as a potential therapeutic target in AML.National Institutes of Health (U.S.) (Harvard Stem Cell Institute. GlaxoSmithKline. Grant P01 CA108631)National Institutes of Health (U.S.) (Harvard Stem Cell Institute. GlaxoSmithKline. Grant RC1 CA145229)National Institutes of Health (U.S.) (Harvard Stem Cell Institute. GlaxoSmithKline. Grant R01 CA140292)National Institutes of Health (U.S.) (Harvard Stem Cell Institute. GlaxoSmithKline. Grant CA148180

    CRISPR-terapi visar potential – möjligheter och utmaningar

    No full text
    CRISPR är en revolutionerande teknik som möjliggör effektiv redigering av DNA.Kliniska studier med CRISPR-baserade terapier för blodsjukdomar och cancer pågår redan.Framtida tillämpningar av CRISPR kan förväntas bli breda men förutsätter etiska, juridiska och hälsoekonomiska överväganden

    Development of Adenoviral Vectors for Studying Hematopoietic Stem Cell Function

    No full text
    Hematopoietic stem cells (HSCs) are defined by their capacity to self-renew and differentiate into all hematopoietic cell lineages. Postnatally, HSCs reside predominantly in the bone marrow and are relatively rare, but important cells because of their therapeutic potential in bone marrow transplantation protocols and in their involvement in the origin of certain leukemias. To study how various genetic programs govern the regulation of HSCs, replication deficient viral vectors, including adenoviral vectors, have been utilized for gene transfer and expression in normal and malignant hematopoietic progenitor and stem cells. Adenoviral vectors allow high levels of transient transgene expression, however, adenoviral transduction of hematopoietic cells has been hampered by low expression of the coaxackie and adenovirus receptor (CAR), which is the primary target cell receptor for adenovirus serotype 5 (Ad5). With the aim to increase adenoviral gene transfer into hematopoietic cells, we modified the versatile Ad5 based AdEasy-1 vector system to Ad35 tropism by switching the shaft and knob domain of the fiber to that of the Ad35 species, which utilizes CD46 as a primary receptor for target cell anchoring. By using this fiber re-targeted system, termed AdEasy-1/F35, we demonstrated that primary chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) patient cells could be efficiently transduced compared to conventional Ad5 vectors. Furthermore, we demonstrated that human candidate HSCs with NOD/SCID repopulating capacity from cord blood were efficiently transduced with the Ad35 tropism vectors. Moreover, in order to study the self-renewal process of HSCs, we utilized the Ad35 tropism vectors as reporters for monitoring human telomerase reverse transcriptase (hTERT) expression in human HSCs. Interestingly, increased hTERT expression was inversely correlated to the self-renewal capacity among primitive human hematopoietic cells and the hTERT reporter vector could be used to separate short-term from long-term repopulating human HSCs. In summary, we have developed a versatile adenoviral vector system with Ad35 tropism that can be used to transiently genetically modify normal and leukemic stem cells. This vector system can be used to study normal regulation of HSCs and has potential in the development of novel therapeutic approaches for malignant blood disorders

    Adenoviral vectors for transient gene expression in human primitive hematopoietic cells: Applications and prospects.

    No full text
    The proliferation and differentiation of primitive hematopoietic cells is tightly controlled by a number of signaling pathways. Transient blockage or enhancement of these signaling pathways may provide a new approach to manipulate the proliferation and differentiation of primitive hematopoietic cells. Adenoviral vectors have in recent years emerged as powerful tools for transient gene expression in human primitive hematopoietic cells. Important advantageous properties of adenoviral vectors include: feasible production of high-titer vector preparations, high efficiency in transducing both quiescent and actively dividing cells, high levels of transient gene expression, and a lack of mutagenic properties associated with integrating vectors. Progress in adenoviral fiber retargeting was recently demonstrated to enable high gene transfer efficiency into nondividing human CD34(+) cells and nonobese diabetic/severe combined immunodeficient mouse bone marrow repopulating cells (SRCs), via the ubiquitously expressed CD46 as a cellular receptor. Importantly, fiber-retargeted adenoviral vectors can be engineered to report gene expression in single living CD34(+) cells, thereby facilitating the isolation and characterization of SRCs and its downstream progenitors based on intrinsic signaling pathways. This review focuses on the current progress and the potential future applications of adenoviral gene transfer into human primitive hematopoietic cells and leukemic cells. (c) 2007 International Society for Experimental Hematology. Published by Elsevier Inc

    Secreted cystatins decrease proliferation and enhance apoptosis of human leukemic cells

    No full text
    Cysteine proteases are implicated in proteolysis events favoring cancer cell growth, spread, and death by apoptosis. Herein, we have studied whether the net growth and survival of the leukemic cell lines Jurkat, U937, and HL-60 are affected by external addition of five proteins acting as natural cysteine protease inhibitors. None of the cystatins examined (A, C, D, and E/M) or chagasin showed consistent effects on Fas-induced apoptosis when evaluated at 1 µm. In contrast, when the intrinsic apoptosis pathway was activated by hydrogen peroxide, addition of cystatin D augmented caspase-3-like activity within all three cell lines. Flow cytometric analysis of U937 cells also showed increased numbers of annexin V-positive cells when hydrogen peroxide was used to initiate apoptosis and cells were cultured in the presence of cystatin D or C. Moreover, stimulation of hydrogen peroxide-induced apoptotic U937 cells with either cystatin C or D resulted in a dose-dependent decrease in the number of cells. Cell viability was also decreased when U937 cells were cultured in the presence of cystatin C or D (1–9 µm) only, demonstrating that these cystatins can reduce cell proliferation by themselves in addition to enhancing apoptosis induced by oxidative stress. These effects on U937 cells were paralleled by internalization of cystatins C and D, indicating these effects are caused by downregulation of intracellular proteolysis. External addition of cystatins C and D to HL-60 and Jurkat cells demonstrated similar degrees of cystatin D uptake and decreased viability as for U937 cells, indicating that these effects are general for leukemic cells

    Secreted cystatins decrease proliferation and enhance apoptosis of human leukemic cells

    No full text
    Cysteine proteases are implicated in proteolysis events favoring cancer cell growth, spread, and death by apoptosis. Herein, we have studied whether the net growth and survival of the leukemic cell lines Jurkat, U937, and HL-60 are affected by external addition of five proteins acting as natural cysteine protease inhibitors. None of the cystatins examined (A, C, D, and E/M) or chagasin showed consistent effects on Fas-induced apoptosis when evaluated at 1 µm. In contrast, when the intrinsic apoptosis pathway was activated by hydrogen peroxide, addition of cystatin D augmented caspase-3-like activity within all three cell lines. Flow cytometric analysis of U937 cells also showed increased numbers of annexin V-positive cells when hydrogen peroxide was used to initiate apoptosis and cells were cultured in the presence of cystatin D or C. Moreover, stimulation of hydrogen peroxide-induced apoptotic U937 cells with either cystatin C or D resulted in a dose-dependent decrease in the number of cells. Cell viability was also decreased when U937 cells were cultured in the presence of cystatin C or D (1–9 µm) only, demonstrating that these cystatins can reduce cell proliferation by themselves in addition to enhancing apoptosis induced by oxidative stress. These effects on U937 cells were paralleled by internalization of cystatins C and D, indicating these effects are caused by downregulation of intracellular proteolysis. External addition of cystatins C and D to HL-60 and Jurkat cells demonstrated similar degrees of cystatin D uptake and decreased viability as for U937 cells, indicating that these effects are general for leukemic cells
    corecore