34 research outputs found

    Electromagnetic interference shielding and physical‐mechanical characteristics of rubber composites filled with manganese‐zinc ferrite and carbon black

    Get PDF
    In the present work, composite materials were prepared by incorporation of manganese-zinc ferrite, carbon black and combination of ferrite and carbon black into acrylonitrile‐butadiene rubber (NBR). For cross‐linking of composites, standard sulfur‐based curing system was applied. The main goal was to investigate the influence of the fillers on the physical‐mechanical properties of composites. Then, the electromagnetic absorption shielding ability was investigated in the frequency range 1 MHz–3 GHz. The results revealed that composites filled with ferrite provide sufficient absorption shielding performance in the tested frequency range. On the other hand, ferrite behaves as an inactive filler and deteriorates the physical‐mechanical characteristics of composites. Carbon black reinforces the rubber matrix and contributes to the improvement of physical-mechanical properties. However, composites filled with carbon black are not able to absorb electromagnetic radiation in the given frequency range. Finally, the combination of carbon black and ferrite resulted in the modification of both physical‐mechanical characteristics and absorption shielding ability of hybrid composites. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Slovak Research and Development AgencySlovak Research and Development Agency [APVV-19-0091]; Slovak University of Technology in BratislavaAgentúra na Podporu Výskumu a Vývoja, APVV: APVV‐19‐009

    Mechanical, thermal, electrical characteristics and emi absorption shielding effectiveness of rubber composites based on ferrite and carbon fillers

    Get PDF
    In this work, rubber composites were fabricated by incorporation of manganese-zinc ferrite alone and in combination with carbon-based fillers into acrylonitrile-butadiene rubber. Electromagnetic parameters and electromagnetic interference (EMI) absorption shielding effectiveness of composite materials were examined in the frequency range 1 MHz–3 GHz. The influence of ferrite and fillers combination on thermal characteristics and mechanical properties of composites was investigated as well. The results revealed that ferrite imparts absorption shielding efficiency to the composites in tested frequency range. The absorption shielding effectiveness and absorption maxima of ferrite filled composites shifted to lower frequencies with increasing content of magnetic filler. The combination of carbon black and ferrite also resulted in the fabrication of efficient EMI shields. However, the EMI absorption shielding effectiveness was lower, which can be ascribed to higher electrical conductivity and higher permittivity of those materials. The highest conductivity and permittivity of composites filled with combination of carbon nanotubes and ferrite was responsible for the lowest absorption shielding effectiveness within the examined frequency range. The results also demonstrated that combination of ferrite with carbon-based fillers resulted in the enhancement of thermal conductivity and improvement of mechanical properties. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Slovak Research and Development AgencySlovak Research and Development Agency [APVV-16-0136, APVV-19-0091]Agentúra na Podporu Výskumu a Vývoja, APVV: APVV-16-0136, APVV-19-009

    CubeSats in Support of Astrophysics, GRBAlpha and Beyond

    Get PDF
    Space science, including the field of astrophysics, is continuously finding innovative use cases for small satellites and CubeSat platforms. These missions support efforts in the democratisation and improved accessibility of space technologies. GRBAlpha, as one of such missions, is a 1U CubeSat carrying an experimental payload for the detection of gamma-ray bursts (GRB)

    GRBAlpha: the smallest astrophysical space observatory -- Part 1: Detector design, system description and satellite operations

    Full text link
    Aims. Since launched on 2021 March 22, the 1U-sized CubeSat GRBAlpha operates and collects scientific data on high-energy transients, making it the smallest astrophysical space observatory to date. GRBAlpha is an in-obit demonstration of a gamma-ray burst (GRB) detector concept suitably small to fit into a standard 1U volume. As it was demonstrated in a companion paper, GRBAlpha adds significant value to the scientific community with accurate characterization of bright GRBs, including the recent outstanding event of GRB 221009A. Methods. The GRB detector is a 75x75x5 mm CsI(Tl) scintillator wrapped in a reflective foil (ESR) read out by an array of SiPM detectors, multi-pixel photon counters by Hamamatsu, driven by two separate, redundant units. To further protect the scintillator block from sunlight and protect the SiPM detectors from particle radiation, we apply a multi-layer structure of Tedlar wrapping, anodized aluminium casing and a lead-alloy shielding on one edge of the assembly. The setup allows observations of gamma radiation within the energy range of 70-890 keV with an energy resolution of ~30%. Results. Here, we summarize the system design of the GRBAlpha mission, including the electronics and software components of the detector, some aspects of the platform as well as the current way of semi-autonomous operations. In addition, details are given about the raw data products and telemetry in order to encourage the community for expansion of the receiver network for our initiatives with GRBAlpha and related experiments.Comment: Accepted for publication in Astronomy & Astrophysics, 9 pages, 10 figure

    Mobilná aplikácia pre autotestovanie digitálnej gramotnosti

    No full text
    Hudec, Ján. Mobile application autotesting digital literacy. Bachelor thesis. Brno: Mendel University in Brno, 2018. This thesis deals with the analysis of the problem of testing digital literacy follow-ing with creation and implementation of such mobile application for operational system Android. Application provides four areas of questions at advanced level as well as exposing results for individual tests

    3D Modelling, Animation and Simulation of Mammal’s Migration Across Roads

    No full text
    The presented article is dealing with the new methods which are designated for data collection of mammals migrating across traffic networks. Nowadays, road construction and securing of older roads is usually accompanied by finding new solutions. Because of lack of collected data we have new opportunities how we can collect this input. The article below describes the most efficient method which is suitable for the model creation, process of creation and issues which are connected with the creation of simulations

    Rubber Composites Based on Polar Elastomers with Incorporated Modified and Unmodified Magnetic Filler

    No full text
    Rubber magnetic composites were prepared by incorporation of unmodified and surface modified strontium ferrite into rubber matrices based on NBR and NBR/PVC. Strontium ferrite was dosed to the rubber matrices in concentration scale ranging from 0 to 100 phr. The main goal was to investigate the influence of the type of ferrite on the curing process, physical-mechanical and magnetic properties of composites. The mutual interactions between the filler and rubber matrices were investigated by determination of cross-link density and SEM analysis. The incorporation of magnetic fillers leads to the increase of cross-link density and remanent magnetic induction of composites. Moreover, the improvement of physical-mechanical properties was achieved in dependence on the content of magnetic fillers. Surface modification of ferrite contributed to the enhancement of adhesion on the interphase filler-rubber. It can be stated that ferrite exhibits reinforcing effect in the composite materials and this reinforcing behavior was emphasized with the increase in polarity of the rubber matrix

    Calcium-Lignosulfonate-Filled Rubber Compounds Based on NBR with Enhanced Physical–Mechanical Characteristics

    No full text
    Calcium lignosulfonate in the amount 30 phr was incorporated into rubber compounds based on pure NBR and an NBR carbon black batch, in which the content of carbon black was 25 phr. Glycerine, as a cheap and environmentally friendly plasticizer, was applied into both types of rubber formulations in a concentration scale ranging from 5 to 20 phr. For the cross-linking of rubber compounds, a sulfur-based curing system was used. The work was aimed at the investigation of glycerine content on the curing process and rheological properties of rubber compounds, cross-link density, morphology and physical–mechanical properties of vulcanizates. The results show that glycerine influences the shapes of curing isotherms and results in a significant decrease between the maximum and minimum torque. This points to the strong plasticizing effect of glycerine on rubber compounds, which was also confirmed from rheological measurements. The application of glycerine resulted in better homogeneity of the rubber compounds and in the better dispersion and distribution of lignosulfonate within the rubber matrix, which was subsequently reflected in the significant improvement of tensile characteristics of vulcanizates. A higher cross-link density as well as better physical–mechanical properties were exhibited by the vulcanizates based on the carbon black batch due to the presence of a reinforcing filler

    Combined Sulfur and Peroxide Vulcanization of Filled and Unfilled EPDM-Based Rubber Compounds

    No full text
    The sulfur curing system, peroxide curing system and their combinations were applied for the cross-linking of unfilled and carbon black-filled rubber formulations based on ethylene-propylenediene-monomer rubber. The results demonstrated that the type of curing system influenced the course and shape of curing isotherms. This resulted in the change of curing kinetics of rubber compounds. The cross-link density of materials cured with combined vulcanization systems was lower than that for vulcanizates cured with the peroxide or sulfur system. Good correlation between the cross-link density as well as the structure of the formed cross-links and physical–mechanical characteristics of the cured materials was established. Both filled and unfilled vulcanizates cured with combined vulcanization systems exhibited a higher tensile strength and elongation at break when compared to their equivalents vulcanized in the presence of the peroxide or sulfur curing system. It can be stated that by proper combination of vulcanization systems, it is possible to modify the tensile behavior of vulcanizates in a targeted manner. On the other side, dynamical–mechanical properties were found not be significantly influenced by the curing system composition
    corecore