14 research outputs found

    DNA Nanostructure-Based Magnetic Beads for Potentiometric Aptasensing

    No full text
    In this work, a simple, general, and sensitive potentiometric platform is presented, which allows potentiometric sensing to be applied to any class of molecule irrespective of the analyte charge. DNA nanostructures are self-assembled on magnetic beads via the incorporation of an aptamer into a hybridization chain reaction. The aptamer target binding event leads to the disassembly of the DNA nanostructures, which results in a dramatic change in the surface charge of the magnetic beads. Such a surface charge change can be sensitively detected by a polycation-sensitive membrane electrode using protamine as an indicator. With an endocrine disruptor bisphenol A as a model, the proposed potentiometric method shows a wide linear range from 0.1 to 100 nM with a low detection limit of 80 pM (3 sigma). The proposed sensing strategy will lay a foundation for the development of potentiometric sensors for highly sensitive and selective detection of various targets
    corecore