40,071,596 research outputs found

    About J-flow, J-balanced metrics, uniform J-stability and K-stability

    Full text link
    From the work of Dervan-Keller, there exists a quantization of the critical equation for the J-flow. This leads to the notion of J-balanced metrics. We prove that the existence of J-balanced metrics has a purely algebro-geometric characterization in terms of Chow stability, complementing the result of Dervan-Keller. We also obtain various criteria that imply uniform J-stability and uniform K-stability. Eventually, we discuss the case of K\"ahler classes that may not be integral over a compact manifold.Comment: 23 pages; In honor of Ngaiming Mok's 60th birthday. To appear in Asian J. Mat

    Systematic analysis of the DJ(2580)D_{J}(2580), DJ(2650)D_{J}^{*}(2650), DJ(2740)D_{J}(2740), DJ(2760)D_{J}^{*}(2760), DJ(3000)D_{J}(3000) and DJ(3000)D_{J}^{*}(3000) in DD meson family

    Full text link
    In this work, we tentatively assign the charmed mesons DJ(2580)D_{J}(2580), DJ(2650)D_{J}^{*}(2650), DJ(2740)D_{J}(2740), DJ(2760)D_{J}^{*}(2760), DJ(3000)D_{J}(3000) and DJ(3000)D_{J}^{*}(3000) observed by the LHCb collaboration according to their spin-parity and masses, then study their strong decays to the ground state charmed mesons plus light pseudoscalar mesons with the 3P0^{3}P_{0} model. According to these study, we assigned the DJ(2760)D_{J}^{*}(2760) as the 1D5231D\frac{5}{2}3^{-} state, the DJ(3000)D_{J}^{*}(3000) as the 1F522+1F\frac{5}{2}2^{+} or 1F724+1F\frac{7}{2}4^{+} state, the DJ(3000)D_{J}(3000) as the 1F723+1F\frac{7}{2}3^{+} or 2P121+2P\frac{1}{2}1^{+} state in the DD meson family. As a byproduct, we also study the strong decays of 2P120+2P\frac{1}{2}0^{+},2P322+2P\frac{3}{2}2^{+}, 3S1213S\frac{1}{2}1^{-}, 3S1203S\frac{1}{2}0^{-} etc, states, which will be helpful to further experimentally study mixings of these DD mesons.Comment: 16 pages,1 figure. arXiv admin note: text overlap with arXiv:0801.4821 by other author

    Impurity Energy Level Within The Haldane Gap

    Full text link
    An impurity bond JJ{'} in a periodic 1D antiferromagnetic, spin 1 chain with exchange JJ is considered. Using the numerical density matrix renormalization group method, we find an impurity energy level in the Haldane gap, corresponding to a bound state near the impurity bond. When J<JJ{'}<J the level changes gradually from the edge of the Haldane gap to the ground state energy as the deviation dev=(JJ)/Jdev=(J-J{'})/J changes from 0 to 1. It seems that there is no threshold. Yet, there is a threshold when J>JJ{'}>J. The impurity level appears only when the deviation dev=(JJ)/Jdev=(J{'}-J)/J{'} is greater than BcB_{c}, which is near 0.3 in our calculation.Comment: Latex file,9 pages uuencoded compressed postscript including 4 figure

    Study of psi(2S) decays to X J/psi

    Full text link
    Using J/psi -> mu^+ mu^- decays from a sample of approximately 4 million psi(2S) events collected with the BESI detector, the branching fractions of psi(2S) -> eta J/psi, pi^0 pi^0 J/psi, and anything J/psi normalized to that of psi(2S) -> pi^+ pi^- J/psi are measured. The results are B(psi(2S) -> eta J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.098 \pm 0.005 \pm 0.010, B(psi(2S) -> pi^0 pi^0 J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.570 \pm 0.009 \pm 0.026, and B(psi(2S) -> anything J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 1.867 \pm 0.026 \pm 0.055.Comment: 13 pages, 8 figure

    Incommensurate correlations in the anisotropic triangular Heisenberg lattice

    Full text link
    We study the anisotropic spin-half antiferromagnetic triangular Heisenberg lattice in two dimensions, seen as a set of chains with couplings J (J') along (in between) chains, respectively. Our focus is on the incommensurate correlation that emerges in this system in a wide parameter range due to the intrinsic frustration of the spins. We study this system with traditional DMRG using cylindrical boundary conditions to least constrain possible incommensurate order. Despite that the limit of essentially decoupled chains J'/J < 0.5 is not very accessible numerically, it appears that the spin-spin correlations remain incommensurate for any finite 0 1. The incommensurate wave vector q_J, however, approaches the commensurate value corresponding to the antiferromagnetic correlation of a single chain very rapidly with decreasing J'/J, roughly as q_J ~ pi - c_1 (J'/J)^n exp(-c_2 J/J').Comment: 12 pages, 13 figure

    Pion interferometry of sqrt[sNN] = 130 GeV Au+Au collisions at RHIC

    Get PDF
    Two-pion correlation functions in Au+Au collisions at sqrt[sNN] = 130 GeV have been measured by the STAR (solenoidal tracker at RHIC) detector. The source size extracted by fitting the correlations grows with event multiplicity and decreases with transverse momentum. Anomalously large sizes or emission durations, which have been suggested as signals of quark-gluon plasma formation and rehadronization, are not observed. The Hanbury Brown-Twiss parameters display a weak energy dependence over a broad range in sqrt[sNN].alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied30, J. Berger11, H. Bichsel29, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, R. Bossingham15, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez31, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro30, D. Cebra5, S. Chattopadhyay30, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian31, B. Choi27, W. Christie2, J. P. Coffin13, L. Conin26, T. M. Cormier30, J. G. Cramer29, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop31, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, V. Faine2, E. Finch31, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, N. Gagunashvili9, J. Gans31, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski28, O. Grachov30, D. Greiner15, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris31, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann27, M. Horsley31, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara27, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik28, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel28, J. Klay5, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde31, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell27, B. Lasiuk31, F. Laue2, A. Lebedev2, T. LeCompte1, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li30, Q. Li15, S. J. Lindenbaum19, M. A. Lisa20, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka31, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller31, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, D. Moltz15, C. F. Moore27, V. Morozov15, M. M. de Moura30, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey30, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov30, T. Pawlak28, V. Perevoztchikov2, W. Peryt28, V. A. Petrov10, W. Pinganaud26, E. Platner24, J. Pluta28, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle29, C. Pruneau30, S. Radomski28, G. Rai15, O. Ravel26, R. L. Ray27, S. V. Razin9,12, D. Reichhold8, J. G. Reid29, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, D. Russ7, V. Rykov30, I. Sakrejda15, J. Sandweiss31, A. C. Saulys2, I. Savin10, J. Schambach27, R. P. Scharenberg23, K. Schweda15, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov31, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky30, M. Strikhanov18, B. Stringfellow23, H. Stroebele11, C. Struck11, A. A. P. Suaide30, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas28, J. Takahashi25, A. H. Tang14, J. H. Thomas15, V. Tikhomirov18, T. A. Trainor29, S. Trentalange6, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin30, F. Wang23, H. Ward27, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu31, A. E. Yakutin22, E. Yamamoto6, J. Yang6, P. Yepes24, A. Yokosawa1, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev
    corecore