82 research outputs found

    Spin-Labeling Magnetic Resonance Imaging Detects Increased Myocardial Blood Flow After Endothelial Cell Transplantation in the Infarcted Heart

    Get PDF
    Background We quantified absolute myocardial blood flow (MBF) using a spin-labeling MRI (SL-MRI) method after transplantation of endothelial cells (ECs) into the infarcted heart. Our aims were to study the temporal changes in MBF in response to EC transplantation and to compare regional MBF with contractile function (wall motion) and microvascular density. Methods and Result We first validated the SL-MRI method with the standard microsphere technique in normal rats. We then induced myocardial infarction in athymic rats and injected 5 million ECs (human umbilical vein endothelial cells) suspended in Matrigel or Matrigel alone (vehicle) along the border of the blanched infarcted area. At 2 weeks after myocardial infarction, MBF averaged over the entire slice (P=0.038) and in the infarcted region (P=0.0086) was significantly higher in EC versus vehicle group; the greater MBF was accompanied by an increase of microvasculature density in the infarcted region (P=0.0105 versus vehicle). At 4 weeks after myocardial infarction, MBF in the remote region was significantly elevated in EC-treated hearts (P=0.0277); this was accompanied by increased wall motion in this region assessed by circumferential strains (P=0.0075). Intraclass correlation coefficients and Bland-Altman plot revealed a good reproducibility of the SL-MRI method. Conclusion MBF in free-breathing rats measured by SL-MRI is validated by the standard color microsphere technique. SL-MRI allows quantification of temporal changes of regional MBF in response to EC treatment. The proof-of-principle study indicates that MBF is a unique and sensitive index to evaluate EC-mediated therapy for the infarcted heart

    Establishing a Clinically Relevant Large Animal Model Platform for TBI Therapy Development: Using Cyclosporin A as a Case Study

    Get PDF
    We have developed the first immature large animal translational treatment trial of a pharmacologic intervention for traumatic brain injury (TBI) in children. The preclinical trial design includes multiple doses of the intervention in two different injury types (focal and diffuse) to bracket the range seen in clinical injury and uses two post-TBI delays to drug administration. Cyclosporin A (CsA) was used as a case study in our first implementation of the platform because of its success in multiple preclinical adult rodent TBI models and its current use in children for other indications. Tier 1 of the therapy development platform assessed the short-term treatment efficacy after 24 h of agent administration. Positive responses to treatment were compared with injured controls using an objective effect threshold established prior to the study. Effective CsA doses were identified to study in Tier 2. In the Tier 2 paradigm, agent is administered in a porcine intensive care unit utilizing neurological monitoring and clinically relevant management strategies, and intervention efficacy is defined as improvement in longer term behavioral endpoints above untreated injured animals. In summary, this innovative large animal preclinical study design can be applied to future evaluations of other agents that promote recovery or repair after TBI

    Unconventional Gas and Oil Drilling Is Associated with Increased Hospital Utilization Rates

    Get PDF
    Over the past ten years, unconventional gas and oil drilling (UGOD) has markedly expanded in the United States. Despite substantial increases in well drilling, the health consequences of UGOD toxicant exposure remain unclear. This study examines an association between wells and healthcare use by zip code from 2007 to 2011 in Pennsylvania. Inpatient discharge databases from the Pennsylvania Healthcare Cost Containment Council were correlated with active wells by zip code in three counties in Pennsylvania. For overall inpatient prevalence rates and 25 specific medical categories, the association of inpatient prevalence rates with number of wells per zip code and, separately, with wells per km2 (separated into quantiles and defined as well density) were estimated using fixed-effects Poisson models. To account for multiple comparisons, a Bonferroni correction with associations of p<0.00096 was considered statistically significant. Cardiology inpatient prevalence rates were significantly associated with number of wells per zip code (p<0.00096) and wells per km2 (p<0.00096) while neurology inpatient prevalence rates were significantly associated with wells per km2 (p<0.00096). Furthermore, evidence also supported an association between well density and inpatient prevalence rates for the medical categories of dermatology, neurology, oncology, and urology. These data suggest that UGOD wells, which dramatically increased in the past decade, were associated with increased inpatient prevalence rates within specific medical categories in Pennsylvania. Further studies are necessary to address healthcare costs of UGOD and determine whether specific toxicants or combinations are associated with organ-specific responses

    The pathologic and clinical heterogeneity of lymphocyte-depleted Hodgkin's disease.

    No full text

    Differential impairment of aspirin-dependent platelet cyclooxygenase acetylation by nonsteroidal antiinflammatory drugs

    No full text
    Li X, Fries S, Li R, et al. Differential impairment of aspirin-dependent platelet cyclooxygenase acetylation by nonsteroidal antiinflammatory drugs. Proceedings of the National Academy of Sciences. 2014;111(47):16830-16835.The cardiovascular safety of nonsteroidal antiinflammatory drugs (NSAIDs) may be influenced by interactions with antiplatelet doses of aspirin. We sought to quantitate precisely the propensity of commonly consumed NSAIDs—ibuprofen, naproxen, and celecoxib—to cause a drug–drug interaction with aspirin in vivo by measuring the target engagement of aspirin directly by MS. We developed a novel assay of cyclooxygenase-1 (COX-1) acetylation in platelets isolated from volunteers who were administered aspirin and used conventional and microfluidic assays to evaluate platelet function. Although ibuprofen, naproxen, and celecoxib all had the potential to compete with the access of aspirin to the substrate binding channel of COX-1 in vitro, exposure of volunteers to a single therapeutic dose of each NSAID followed by 325 mg aspirin revealed a potent drug–drug interaction between ibuprofen and aspirin and between naproxen and aspirin but not between celecoxib and aspirin. The imprecision of estimates of aspirin consumption and the differential impact on the ability of aspirin to inactivate platelet COX-1 will confound head-to-head comparisons of distinct NSAIDs in ongoing clinical studies designed to measure their cardiovascular risk
    • …
    corecore