10 research outputs found

    Silicon photomultiplier characterization on board a satellite in Low Earth Orbit

    Get PDF
    The LabOSat collaboration (acronym for “Laboratory On a Satellite”) aims to increase the Technology Readiness Level (TRL) of electronic devices and components for space-borne applications. We have developed a single-board electronic platform which is able to operate in space conditions. This board harbors Devices Under Test and performs electric experiments on them. Since 2014, we have participated in six satellite missions (Satellogic small satellites) in Low Earth Orbits, in which we studied the performance of electronic devices such as resistive switching memories and dosimeters based on field-effect transistors. In this work we present our efforts to increase the TRL of Silicon Photomultipliers (SiPMs). In early 2019 we have integrated four 6-mm SiPMs into a 40-kg satellite to study their performance in space. Each SiPM was encapsulated into individual light-tight aluminum housings, which included LEDs for excitation. The SiPMs and the LEDs are operated in DC current mode. Besides the SiPMs current and voltage measurements, the experiment also collects telemetry parameters like temperature, timestamp and orbital position.Fil: Barella, Mariano. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Burroni, Tomás Ignacio. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Carsen, Irina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Far, Mónica. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Ferreira Chase, Tomás Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Finazzi, Lucas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golmar, Federico. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gomez Marlasca, Fernando. Comisión Nacional de Energía Atómica; ArgentinaFil: Izraelevitch, Federico Hernán. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Levy, Pablo. Comisión Nacional de Energía Atómica; ArgentinaFil: Sanca, Gabriel. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentin

    DAMIC at SNOLAB

    Get PDF
    We introduce the fully-depleted charge-coupled device (CCD) as a particle detector. We demonstrate its low energy threshold operation, capable of detecting ionizing energy depositions in a single pixel down to 50 eVee. We present results of energy calibrations from 0.3 keVee to 60 keVee, showing that the CCD is a fully active detector with uniform energy response throughout the silicon target, good resolution (Fano ~0.16), and remarkable linear response to electron energy depositions. We show the capability of the CCD to localize the depth of particle interactions within the silicon target. We discuss the mode of operation and unique imaging capabilities of the CCD, and how they may be exploited to characterize and suppress backgrounds. We present the first results from the deployment of 250 um thick CCDs in SNOLAB, a prototype for the upcoming DAMIC100. DAMIC100 will have a target mass of 0.1 kg and should be able to directly test the CDMS-Si signal within a year of operation.Comment: 13 pages, 12 figures, proceedings prepared for 13th International Conference on Topics in Astroparticle and Underground Physics (TAUP2013

    Exploring low-energy neutrino physics with the Coherent Neutrino Nucleus Interaction Experiment

    Get PDF
    The Coherent Neutrino-Nucleus Interaction Experiment (CONNIE) uses low-noise fully depleted charge-coupled devices (CCDs) with the goal of measuring low-energy recoils from coherent elastic scattering ( CE ν NS ) of reactor antineutrinos with silicon nuclei and testing nonstandard neutrino interactions (NSI). We report here the first results of the detector array deployed in 2016, considering an active mass 47.6 g (eight CCDs), which is operating at a distance of 30 m from the core of the Angra 2 nuclear reactor, with a thermal power of 3.8 GW. A search for neutrino events is performed by comparing data collected with the reactor on (2.1 kg-day) and reactor off (1.6 kg-day). The results show no excess in the reactor-on data, reaching the world record sensitivity down to recoil energies of about 1 keV (0.1 keV electron equivalent). A 95% confidence level limit for new physics is established at an event rate of 40 times the one expected from the standard model at this energy scale. The results presented here provide a new window to low-energy neutrino physics, allowing one to explore for the first time the energies accessible through the low threshold of CCDs. They will lead to new constraints on NSI from the CEνNS of antineutrinos from nuclear reactors.Fil: Aguilar Arevalo, Alexis. Universidad Nacional Autónoma de México; MéxicoFil: Bertou, Xavier Pierre Louis. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Bonifazi, Carla Brenda. Universidade Federal do Rio de Janeiro; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cancelo, Gustavo Indalecio. Fermi National Accelerator Laboratory; Estados UnidosFil: Castañeda, Alejandro. Universidad Nacional Autónoma de México; MéxicoFil: Cervantes Vergara, Brenda. Universidad Nacional Autónoma de México; MéxicoFil: Chavez, Claudio. Universidad Nacional de Asunción; ParaguayFil: D’Olivo, Juan C.. Universidad Nacional Autónoma de México; MéxicoFil: Dos Anjos, João C.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Estrada, Juan. Fermi National Accelerator Laboratory; Estados UnidosFil: Fernandes Neto, Aldo R.. Centro Federal de Educacão Tecnológica Celso Suckow Da Fonseca; BrasilFil: Fernández Moroni, Guillermo. Fermi National Accelerator Laboratory; Estados Unidos. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Foguel, Ana. Universidade Federal do Rio de Janeiro; BrasilFil: Ford, Richard. Fermi National Accelerator Laboratory; Estados UnidosFil: Gonzalez Cuevas, Juan. Universidad Nacional de Asunción; ParaguayFil: Hernández, Pamela. Universidad Nacional Autónoma de México; MéxicoFil: Hernandez, Susana. Fermi National Accelerator Laboratory; Estados UnidosFil: Izraelevitch, Federico Hernán. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kavner, Alexander R.. University of Michigan; Estados UnidosFil: Kilminster, Ben. Universitat Zurich; SuizaFil: Kuk, Kevin. Fermi National Accelerator Laboratory; Estados UnidosFil: Lima, H.P.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Makler, Martín. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Molina, Jorge. Universidad Nacional de Asunción; ParaguayFil: Mota, Philipe. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Nasteva, Irina. Universidade Federal do Rio de Janeiro; BrasilFil: Paolini, Eduardo Emilio. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Romero, Carlos. Universidad Nacional de Asunción; ParaguayFil: Sarkis, Y.. Universidad Nacional Autónoma de México; MéxicoFil: Sofo Haro, Miguel Francisco. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de Cuyo; Argentina. Fermi National Accelerator Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnol.conicet - Patagonia Norte. Unidad de Adm.territorial; ArgentinaFil: Souza, Iruatã M. S.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Tiffenberg, Javier Sebastian. Fermi National Accelerator Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wagner, Stefan. Centro Brasileiro de Pesquisas Físicas; Brasil. Pontifícia Universidade Católica do Rio de Janeiro; Brasi

    Search for coherent elastic neutrino-nucleus scattering at a nuclear reactor with CONNIE 2019 data

    Full text link
    The Coherent Neutrino-Nucleus Interaction Experiment (CONNIE) is taking data at the Angra 2 nuclear reactor with the aim of detecting the coherent elastic scattering of reactor antineutrinos with silicon nuclei using charge-coupled devices (CCDs). In 2019 the experiment operated with a hardware binning applied to the readout stage, leading to lower levels of readout noise and improving the detection threshold down to 50 eV. The results of the analysis of 2019 data are reported here, corresponding to the detector array of 8 CCDs with a fiducial mass of 36.2 g and a total exposure of 2.2 kg-days. The difference between the reactor-on and reactor-off spectra shows no excess at low energies and yields upper limits at 95% confidence level for the neutrino interaction rates. In the lowest-energy range, 50-180 eV, the expected limit stands at 34 (39) times the standard model prediction, while the observed limit is 66 (75) times the standard model prediction with Sarkis (Chavarria) quenching factors.Comment: 23 pages, 14 figure

    Dark matter search by means of the measurement of ionization production of nuclear recoils with the DAMIC detector

    No full text
    Desde su planteo inicial, alrededor del año 1930, el problema de la materia oscurapermanece como uno de los mayores problemas abiertos en Física. Actualmente,existe un gran número de evidencias observacionales, astrofísicas y cosmológicas, quemotivan la hipótesis de la existencia de una forma de materia distinta a la materiaordinaria, llamada materia oscura. A pesar del esfuerzo realizado para detectarla, sunaturaleza permanece ignota. Las búsquedas por detección directa comenzaron enfocadasen extensiones supersimétricas mínimas del modelo estándar, que predicenpartículas con masas de ~ 100 GeV/c². Los límites de exclusión impuestos por losexperimentos de búsqueda, los nulos resultados de las búsquedas de supersimetríaen el Large Hadron Collider, las afirmaciones de detección de algunas colaboracionescomo DAMA, y el desarrollo de nuevos modelos de partículas de materia oscuraliviana, motivó a la comunidad a buscar partículas de materia oscura con masas pordebajo de los ~ 10 GeV/c². Se piensa que las partículas de materia oscura interactúan coherentemente (en forma elástica) con los núcleos produciendo retrocesosnucleares. Por consideraciones cinemáticas, cuanto menor sea la masa de la partículade materia oscura, menor será la energía del retroceso nuclear a detectar. El experimento DAMIC, que enmarca este trabajo de tesis, utiliza sensores CCDs (Charge-Coupled Devices) de grado científico como detectores para la búsqueda demateria oscura. En su programa de R&D, entre 2011 y 2015, ha demostrado laoperación de los CCDs con el umbral más bajo alcanzado por la comunidad dedetección directa. Esto ha motivado el desarrollo de un detector masivo, llamado DAMIC100, que buscará materia oscura de baja masa en una zona del espacio defases no explorada aún. En los detectores semiconductores, un retroceso nucleardeposita su energía produciendo ionización y fonones. Dado que el detector DAMICsolo es capaz de medir la señal de ionización, resulta fundamental determinar laionización producida por los retrocesos nucleares para la interpretación de los datosadquiridos en los experimentos de búsqueda de partículas de materia oscura. En este trabajo describimos el problema de la materia oscura, detallando laevidencia experimental que motiva su hipótesis. Explicamos los métodos utilizadospara su búsqueda y discutimos el estado actual de estos efuerzos. Describimosel experimento DAMIC, su principio de funcionamiento, características y el arregloexperimental utilizado en el laboratorio subterráneo SNOLAB. Discutimos la importanciade la calibración del detector mediante la medición de la ionización producidapor retrocesos nucleares y revisamos los antecedentes en la literatura. Finalmente,describimos un experimento de dispersión elástica de neutrones realizado para medirla eficiencia de ionización a bajas energías, y discutimos los resultados obtenidos.The dark matter problem is one of the major open questions in Physics, since itsconception around 1930. Vast astrophysical and cosmological observational evidencemotivates the hypothesis of the existence of a form of matter distinct to the ordinaryone, called dark matter. Despite the efforts to detect it, its nature remains unknown. Direct detection searches began focused in minimal supersymmetric extensions ofthe standard model, predicting particles with masses of ~ 100 GeV/c². Exclusionlimits of search experiments, null results of supersymmetry searches at the Large Hadron Collider, detection claims of some collaborations, and the development oflow-mass dark-matter models, motivated the community to search for dark matterparticles with masses below ~ 10 GeV/c². It is thought that dark matter particlesinteract coherently (elastically) with nuclei producing nuclear recoils. For kinematicsreasons, the lighter the dark matter particle the lower the energy of the nuclear recoil. The DAMIC experiment, the framework of the present thesis, uses scientific grade Charge-Coupled Devices as detectors for the dark matter search. In the R&Dphase (2012-2015) the collaboration demonstrated the operation of the CCDs withthe lowest threshold achieved by the direct-detection community. This motivated thedevelopment of a massive detector, DAMIC100, that will search for low-mass darkmatter particles in an unexplored phase-space region. In semiconductor detectors,a nuclear recoil deposits its energy producing ionization and phonons. The DAMICdetector is only capable to measure ionization. Thus, it is crucial to determine theionization produced by nuclear recoils to interpret the data acquired in the darkmatter search experiments. In this work we describe the dark matter problem, detailing the evidence thatmotivates its hypothesis. We explain the methods used for the searches and wediscuss the actual state of these efforts. We describe the DAMIC experiment, itsworking principle, characteristics and the setup deployed in the deep undergroundlaboratory SNOLAB. We discuss the importance of the calibration of the detectorby measuring the ionization production by nuclear recoils and we review past studiesfound in the literature. Finally, we describe a neutron elastic-scattering experimentperformed to measure the ionization efficiency of nuclear recoils at low energies andwe discuss the results.Fil: Izraelevitch, Federico H.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Search for light mediators in the low-energy data of the CONNIE reactor neutrino experiment

    Get PDF
    The CONNIE experiment is located at a distance of 30 m from the core of a commercial nuclear reactor, and has collected a 3.7 kg-day exposure using a CCD detector array sensitive to an ∼1 keV threshold for the study of coherent neutrino-nucleus elastic scattering. Here we demonstrate the potential of this low-energy neutrino experiment as a probe for physics Beyond the Standard Model, by using the recently published results to constrain two simplified extensions of the Standard Model with light mediators. We compare the new limits with those obtained for the same models using neutrinos from the Spallation Neutron Source. Our new constraints represent the best limits for these simplified models among the experiments searching for CEνNS for a light vector mediator with mass MZ′< 10 MeV, and for a light scalar mediator with mass Mϕ< 30 MeV. These results constitute the first use of the CONNIE data as a probe for physics Beyond the Standard Model

    The DAMIC-100 dark matter detection experiment with CCDs at SNOLAB

    No full text
    The DAMIC (Dark Matter in CCDs) experiment uses the fully depleted silicon of CCDs (Charge Coupled Devices) as a target for galactic dark matter. The ionization energy threshold for detecting nuclear recoils of dark matter reaches down to 50 eVee_{ee}, resulting in better sensitivity to dark matter with mass below 5 GeV than other direct dark matter detection experiments. Installation of the DAMIC-100 experiment at SNOLAB is ongoing and we present our expected sensitivity, which will extend the reach to low-mass dark matter cross sections within a year of operation
    corecore