3,109 research outputs found

    On the semiclassical mass of S2{\mathbb S}^2-kinks

    Full text link
    One-loop mass shifts to the classical masses of stable kinks arising in a massive non-linear S2{\mathbb S}^2-sigma model are computed. Ultraviolet divergences are controlled using the heat kernel/zeta function regularization method. A comparison between the results achieved from exact and high-temperature asymptotic heat traces is analyzed in depth.Comment: RevTex file, 15 pages, 2 figures. Version to appear in Journal of Physics

    On domain walls in a Ginzburg-Landau non-linear S^2-sigma model

    Get PDF
    The domain wall solutions of a Ginzburg-Landau non-linear S2S^2-sigma hybrid model are unveiled. There are three types of basic topological walls and two types of degenerate families of composite - one topological, the other non-topological- walls. The domain wall solutions are identified as the finite action trajectories (in infinite time) of a related mechanical system that is Hamilton-Jacobi separable in sphero-conical coordinates. The physical and mathematical features of these domain walls are thoroughly discussed.Comment: 26 pages, 18 figure

    Contractions of Filippov algebras

    Full text link
    We introduce in this paper the contractions Gc\mathfrak{G}_c of nn-Lie (or Filippov) algebras G\mathfrak{G} and show that they have a semidirect structure as their n=2n=2 Lie algebra counterparts. As an example, we compute the non-trivial contractions of the simple An+1A_{n+1} Filippov algebras. By using the \.In\"on\"u-Wigner and the generalized Weimar-Woods contractions of ordinary Lie algebras, we compare (in the G=An+1\mathfrak{G}=A_{n+1} simple case) the Lie algebras Lie Gc\,\mathfrak{G}_c (the Lie algebra of inner endomorphisms of Gc\mathfrak{G}_c) with certain contractions (Lie G)IW(\mathrm{Lie}\,\mathfrak{G})_{IW} and (Lie G)W−W(\mathrm{Lie}\,\mathfrak{G})_{W-W} of the Lie algebra Lie G\,\mathfrak{G} associated with G\mathfrak{G}.Comment: plain latex, 36 pages. A few misprints corrected. This v3 is actually v2 (v1 had been replaced by itself by error). To appear in J. Math. Phy
    • …
    corecore