8 research outputs found

    MEGARA Optics: stain removal in PBM2Y prisms

    Get PDF
    MEGARA is the new integral-field and multi-object optical spectrograph for the GTC. For medium and high resolution, the dispersive elements are volume phase holographic gratings, sandwiched between two flat windows and two prisms of high optical precision. The prisms are made of Ohara PBM2Y optical glass. After the prisms polishing process, some stains appeared on the surfaces. For this, in this work is shown the comparative study of five different products (muriatic acid, paint remover, sodium hydroxide, aqua regia and rare earth liquid polish) used for trying to eliminate the stains of the HR MEGARA prisms. It was found that by polishing with the hands the affected area, and using a towel like a kind of pad, and polish during five minutes using rare earth, the stains disappear completely affecting only a 5% the rms of the surface quality. Not so the use of the other products that did not show any apparent result

    A new insight of AGC 198691 (Leoncino) galaxy with MEGARA at the GTC

    Get PDF
    We describe the observations of the low metallicity nearby galaxy AGC 198691 (Leoncino Dwarf) obtained with the Integral Field Unit of the instrument MEGARA at the Gran Telescopio Canarias. The observations cover the wavelength ranges 4304–5198 Å and 6098–7306 Å with a resolving power R ≈ 6000. We present 2D maps of the ionized gas, deriving the extension of the H II region and gas kinematics from the observed emission lines. We have not found any evidence of recent gas infall or loss of metals by means of outflows. This result is supported by the closed-box model predictions, consistent with the oxygen abundance found by other authors in this galaxy and points towards Leoncino being a genuine XMD galaxy. We present for the first time spatially resolved spectroscopy allowing the detailed study of a star-forming region. We use POPSTAR + CLOUDY models to simulate the emission-line spectrum. We find that the central emission-line spectrum can be explained by a single young ionizing cluster with an age of ≈ 3.5 ± 0.5 Myr and a stellar mass of ≈ 2 ×103 M⊙. However, the radial profiles of [OIII] λ 5007Å and the Balmer lines in emission demand photoionization by clusters of different ages between 3.5 and 6.5 Myr that might respond either to the evolution of a single cluster evolving along the cooling time of the nebula (≈ 3 Myr at the metallicity of Leoncino, Z≈ 0.0004) or to mass segregation of the cluster, being both scenarios consistent with the observed equivalent widths of the Balmer lines. © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.This work is based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos, on the island of La Palma. The work is based on data obtained with the MEGARA instrument, funded by European Regional Development Funds (ERDF), through the Programa Operativo Canarias FEDER 2014-2020. The authors thank the support given by Dr. Antonio Cabrera and Dr. Daniel Reverté, GTC Operations Group staff, during the preparation and execution of the observations at the GTC. This work has been supported by DGICYT grant RTI2018- 096188-B-I00, which is partly funded by the European Regional Development Fund (ERDF). Jorge Iglesias acknowledges financial support from the following projects: Estallidos6 AYA2016-79724-C4 (Spanish Ministerio de Economía y Competitividad), Estallidos7 PID2019-107408GB-C44 (Spanish Ministerio de Ciencia e Innovación), grant P18-FR-2664 (Junta de Andalucía), and grantSEV-2017-0709 ‘Centro de Excelencia Severo Ochoa Program’ (Spanish Science Ministry). This research is based on observations made with the NASA/ESA Hubble Space Telescope obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555. These observations are associated with program 15243. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.Peer reviewe

    A new insight of AGC 198691 (Leoncino) galaxy with MEGARA at the GTC

    Get PDF
    We describe the observations of the low metallicity nearby galaxy AGC 198691 (Leoncino Dwarf) obtained with the Integral Field Unit of the instrument MEGARA at the Gran Telescopio Canarias. The observations cover the wavelength ranges 4304-5198 Aand 6098-7306 Awith a resolving power R approximate to 6000. We present 2D maps of the ionized gas, deriving the extension of the H II region and gas kinematics from the observed emission lines. We have not found any evidence of recent gas infall or loss of metals by means of outflows. This result is supported by the closed-box model predictions, consistent with the oxygen abundance found by other authors in this galaxy and points towards Leoncino being a genuine XMD galaxy. We present for the first time spatially resolved spectroscopy allowing the detailed study of a star-forming region. We use POPSTAR + CLOUDY models to simulate the emission-line spectrum. We find that the central emission-line spectrum can be explained by a single young ionizing cluster with an age of approximate to 3.5 +/- 0.5 Myr and a stellar mass of approximate to 2 x10(3) M-circle dot. However, the radial profiles of [O III].5007Aand the Balmer lines in emission demand photoionization by clusters of different ages between 3.5 and 6.5 Myr that might respond either to the evolution of a single cluster evolving along the cooling time of the nebula (approximate to 3 Myr at the metallicity of Leoncino, Z approximate to 0.0004) or to mass segregation of the cluster, being both scenarios consistent with the observed equivalent widths of the Balmer lines

    Spatially resolved properties of the ionized gas in the H II galaxy J084220+115000

    Get PDF
    We present a spatially resolved spectroscopic study for the metal poor H II galaxy J084220+115000 using MEGARA Integral Field Unit observations at the Gran Telescopio Canarias. We estimated the gas metallicity using the direct method for oxygen, nitrogen, and helium and found a mean value of 12 + log (O/H) = 8.03 ± 0.06, and integrated electron density and temperature of ∼161 cm−3 and ∼15400 K, respectively. The metallicity distribution shows a large range of Δ(O/H) = 0.72 dex between the minimum and maximum (7.69 ± 0.06 and 8.42 ± 0.05) values, unusual in a dwarf star-forming galaxy. We derived an integrated log (N/O) ratio of −1.51 ± 0.05 and found that both N/O and O/H correspond to a primary production of metals. Spatially resolved maps indicate that the gas appears to be photoionized by massive stars according to the diagnostic line ratios. Between the possible mechanisms to explain the starburst activity and the large variation of oxygen abundance in this galaxy, our data support a possible scenario where we are witnessing an ongoing interaction triggering multiple star-forming regions localized in two dominant clumps. © 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.DFA work is funded by a Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico) grant through project A1-S-22784. This publication is based on data obtained with the MEGARA instrument at the GTC, installed in the Spanish Observatorio del Roque de los Muchachos, in the island of La Palma. MEGARA has been built by a Consortium led by the Universidad Complutense de Madrid (Spain) and that also includes the Instituto de Astrofísica, Optica y Electrónica (INAOE, Mexico), Instituto de Astrofísica de Andalucía (CSIC, Spain), and the Universidad Politécnica de Madrid (Spain). This work is based on data obtained with the MEGARA instrument, funded by European Regional Development Funds (ERDF), through the Programa Operativo Canarias FEDER 2014–2020. YDM thanks CONACYT for the research grant CB-A1-S-25070 and DRG for the research grant CB-A1-S-22784 from which the postdoctoral grant that supported DFA was obtained. RC also thanks CONACyT for the research grant CF2022-320152. RA acknowledges support from ANID Fondecyt Regular 1202007. ALGM acknowledges support from the Spanish Ministry of Science and Innovation, project PID2019-107408GB-C43 (ESTALLIDOS), and from Gobierno de Canarias through EU FEDER funding, project PID2020010050. JMA acknowledges the support of the Viera y Clavijo Senior program funded by ACIISI and ULL. JIP acknowledges financial support from projects Estallidos6 AYA2016-79724-C4 (Spanish Ministerio de Economia y Competitividad), Estallidos7 PID2019-107408GB-C44 (Spanish Ministerio de Ciencia e Innovacion), grant P18-FR-2664 (Junta de Andalucía), and grant SEV-2017-0709 ‘Center of Excellence Severo Ochoa Program’ (State Agency for Research of the Spanish MCIU).With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001131-S).Peer reviewe

    MEGARA, the new intermediate-resolution optical IFU and MOS for GTC: getting ready for the telescope

    Get PDF
    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma that is being built by a Consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). The instrument is currently finishing AIV and will be sent to GTC on November 2016 for its on-sky commissioning on April 2017. The MEGARA IFU fiber bundle (LCB) covers 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec while the MEGARA MOS mode allows observing up to 92 objects in a region of 3.5x3.5 arcmin2 around the IFU. The IFU and MOS modes of MEGARA will provide identical intermediate-to-high spectral resolutions (RFWHM~6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic gratings) in the range 3700-9800ÅÅ. An x-y mechanism placed at the pseudo-slit position allows (1) exchanging between the two observing modes and (2) focusing the spectrograph for each VPH setup. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts a 4kx4k 15-μm CCD. The unique characteristics of MEGARA in terms of throughput and versatility and the unsurpassed collecting are of GTC make of this instrument the most efficient tool to date to analyze astrophysical objects at intermediate spectral resolutions. In these proceedings we present a summary of the instrument characteristics and the results from the AIV phase. All subsystems have been successfully integrated and the system-level AIV phase is progressing as expected

    MEGARA, the R=6000-20000 IFU and MOS of GTC

    Get PDF
    MEGARA is the new generation IFU and MOS optical spectrograph built for the 10.4m Gran Telescopio CANARIAS (GTC). The project was developed by a consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain) and UPM (Spain). The instrument arrived to GTC on March 28th 2017 and was successfully integrated and commissioned at the telescope from May to August 2017. During the on-sky commissioning we demonstrated that MEGARA is a powerful and robust instrument that provides on-sky intermediate-to-high spectral resolutions RFWHM ~ 6,000, 12,000 and 20,000 at an unprecedented efficiency for these resolving powers in both its IFU and MOS modes. The IFU covers 12.5 x 11.3 arcsec 2 while the MOS mode allows observing up to 92 objects in a region of 3.5 x 3.5 arcmin 2 . In this paper we describe the instrument main subsystems, including the Folded-Cassegrain unit, the fiber link, the spectrograph, the cryostat, the detector and the control subsystems, and its performance numbers obtained during commissioning where the fulfillment of the instrument requirements is demonstrated. © 2018 SPIE

    First scientific observations with MEGARA at GTC

    Get PDF
    On June 25th 2017, the new intermediate-resolution optical IFU and MOS of the 10.4-m GTC had its first light. As part of the tests carried out to verify the performance of the instrument in its two modes (IFU and MOS) and 18 spectral setups (identical number of VPHs with resolutions R=6000-20000 from 0.36 to 1 micron) a number of astronomical objects were observed. These observations show that MEGARA@GTC is called to fill a niche of high-throughput, intermediateresolution IFU and MOS observations of extremely-faint narrow-lined objects. Lyman-α absorbers, star-forming dwarfs or even weak absorptions in stellar spectra in our Galaxy or in the Local Group can now be explored to a new level. Thus, the versatility of MEGARA in terms of observing modes and spectral resolution and coverage will allow GTC to go beyond current observational limits in either depth or precision for all these objects. The results to be presented in this talk clearly demonstrate the potential of MEGARA in this regard
    corecore