48 research outputs found

    Characteristics of Streptococcus pneumoniae Strains Colonizing Upper Respiratory Tract of Healthy Preschool Children in Poland

    Get PDF
    Antibiotic resistant and invasive pneumococci may spread temporally and locally in day care centers (DCCs). We examined 267 children attending four DCCs located in the same city and 70 children staying at home in three seasons (autumn, winter, and spring) to determine prevalence, serotype distribution, antibiotic resistance patterns, and transmission of pneumococcal strains colonizing upper respiratory tract of healthy children without antipneumococcal vaccination. By pheno-and genotyping, we determined clonality of pneumococci, including drug-resistant strains. The average carriage of pneumococci in three seasons was 38.2%. 73.4% and 80.4% of the isolates belonged to serotypes present in 10-and 13-valent conjugate vaccine, respectively. Among the pneumococcal strains, 33.3% were susceptible to all antimicrobial tested and 39.2% had decreased susceptibility to penicillin. Multidrug resistance was common (35.7%); 97.5% of drug-resistant isolates represented serotypes included to 10-and 13-valent conjugate vaccine. According to BOX-PCR, clonality definitely was observed only in case of serotype 14. Multivariate analysis determined DCC attendance as strongly related to pneumococcal colonization in all three seasons, but important seasonal differences were demonstrated. In children attending DCCs, we observed dynamic turnover of pneumococcal strains, especially penicillin nonsusceptible and multidrug resistant, which were mostly distributed among serotypes included to available pneumococcal conjugate vaccines

    Upper Respiratory Tract Colonization by Gram-Negative Rods in Patients with Chronic Lymphocytic Leukemia: Analysis of Risk Factors

    Get PDF
    The aim of the study was to assess the frequency and predisposing factors of colonization of upper respiratory tract by Gram-negative rods (GNRs) in chronic lymphocytic leukemia (CLL) patients. Antimicrobial susceptibility of the isolated strains was determined. A significantly higher frequency of GNR colonization in CLL patients was observed (36.7%) in comparison to healthy volunteers (8.3%). GNR isolates mainly belonged to the Enterobacteriaceae family. Three isolates of GNR demonstrating presence of AmpC β-lactamases and one ESBL-producing strain were obtained from CLL patients. GNR colonization rate was higher among CLL patients with lower level of IgG in serum (P = 0.017), with higher number of neutrophils (P = 0.039) or higher number of lymphocytes in serum (P = 0.053). The longer the time elapsed since diagnosis, the higher the frequency of GNR colonization observed. Multivariate analysis showed importance of the Rai stage, number, and type of infections as independent predictors of GNR colonization in CLL patients

    Synthesis, spectroscopy, single-crystal structure analysis and antibacterial activity of two novel complexes of silver(I) with miconazole drug

    Get PDF
    In a previous article, we reported on the higher toxicity of silver(I) complexes of miconazole [Ag(MCZ)2NO3 (1)] and [Ag(MCZ)2ClO4 (2)] in HepG2 tumor cells compared to the corresponding salts of silver, miconazole and cisplatin. Here, we present the synthesis of two silver(I) complexes of miconazole containing two new counter ions in the form of Ag(MCZ)2X (MCZ = 1-[2-(2,4-dichlorobenzyloxy)-2-(2,4-dichlorophenyl)ethyl]-1H-imidazole]; X = BF4− (3), SbF6− (4)). The novel silver(I) complexes were characterized by elemental analysis, 1H NMR, 13C NMR and infrared (IR) spectroscopy, electrospray ionization (ESI)-MS spectrometry and X-ray-crystallography. In the present study, the antimicrobial activity of all obtained silver(I) complexes of miconazole against six strains of Gram-positive bacteria, five strains of Gram-negative bacteria and yeasts was evaluated. The results were compared with those of a silver sulfadiazine drug, the corresponding silver salts and the free ligand. Silver(I) complexes exhibited significant activity against Gram-positive bacteria, which was much better than that of silver sulfadiazine and silver salts. The highest antimicrobial activity was observed for the complex containing the nitrate counter ion. All Ag(I) complexes of miconazole resulted in much better inhibition of yeast growth than silver sulfadiazine, silver salts and miconazole. Moreover, the synthesized silver(I) complexes showed good or moderate activity against Gram-negative bacteria compared to the free ligand

    Phytochemical and biological activity studies on Nasturtium officinale (watercress) microshoot cultures grown in RITA®^{®} temporary immersion systems

    Get PDF
    The main compounds in both extracts were gluconasturtiin, 4-methoxyglucobrassicin and rutoside, the amounts of which were, respectively, determined as 182.93, 58.86 and 23.24 mg/100 g dry weight (DW) in biomass extracts and 640.94, 23.47 and 7.20 mg/100 g DW in plant herb extracts. The antioxidant potential of all the studied extracts evaluated using CUPRAC (CUPric Reducing Antioxidant Activity), FRAP (Ferric Reducing Ability of Plasma), and DPPH (1,1-diphenyl-2-picrylhydrazyl) assays was comparable. The anti-inflammatory activity of the extracts was tested based on the inhibition of 15-lipoxygenase, cyclooxygenase-1, cyclooxygenase-2 (COX-2), and phospholipase A2. The results demonstrate significantly higher inhibition of COX-2 for in vitro cultured biomass compared with the herb extracts (75.4 and 41.1%, respectively). Moreover, all the studied extracts showed almost similar antibacterial and antifungal potential. Based on these findings, and due to the fact that the growth of in vitro microshoots is independent of environmental conditions and unaffected by environmental pollution, we propose that biomass that can be rapidly grown in RITA® bioreactors can serve as an alternative source of bioactive compounds with valuable biological properties

    The Helicobacter pylori Genome Project : insights into H. pylori population structure from analysis of a worldwide collection of complete genomes

    Get PDF
    Helicobacter pylori, a dominant member of the gastric microbiota, shares co-evolutionary history with humans. This has led to the development of genetically distinct H. pylori subpopulations associated with the geographic origin of the host and with differential gastric disease risk. Here, we provide insights into H. pylori population structure as a part of the Helicobacter pylori Genome Project (HpGP), a multi-disciplinary initiative aimed at elucidating H. pylori pathogenesis and identifying new therapeutic targets. We collected 1011 well-characterized clinical strains from 50 countries and generated high-quality genome sequences. We analysed core genome diversity and population structure of the HpGP dataset and 255 worldwide reference genomes to outline the ancestral contribution to Eurasian, African, and American populations. We found evidence of substantial contribution of population hpNorthAsia and subpopulation hspUral in Northern European H. pylori. The genomes of H. pylori isolated from northern and southern Indigenous Americans differed in that bacteria isolated in northern Indigenous communities were more similar to North Asian H. pylori while the southern had higher relatedness to hpEastAsia. Notably, we also found a highly clonal yet geographically dispersed North American subpopulation, which is negative for the cag pathogenicity island, and present in 7% of sequenced US genomes. We expect the HpGP dataset and the corresponding strains to become a major asset for H. pylori genomics

    Characteristics of Streptococcus pneumoniae Strains Colonizing Upper Respiratory Tract of Healthy Preschool Children in Poland

    Get PDF
    Antibiotic resistant and invasive pneumococci may spread temporally and locally in day care centers (DCCs). We examined 267 children attending four DCCs located in the same city and 70 children staying at home in three seasons (autumn, winter, and spring) to determine prevalence, serotype distribution, antibiotic resistance patterns, and transmission of pneumococcal strains colonizing upper respiratory tract of healthy children without antipneumococcal vaccination. By pheno- and genotyping, we determined clonality of pneumococci, including drug-resistant strains. The average carriage of pneumococci in three seasons was 38.2%. 73.4% and 80.4% of the isolates belonged to serotypes present in 10- and 13-valent conjugate vaccine, respectively. Among the pneumococcal strains, 33.3% were susceptible to all antimicrobial tested and 39.2% had decreased susceptibility to penicillin. Multidrug resistance was common (35.7%); 97.5% of drug-resistant isolates represented serotypes included to 10- and 13-valent conjugate vaccine. According to BOX-PCR, clonality definitely was observed only in case of serotype 14. Multivariate analysis determined DCC attendance as strongly related to pneumococcal colonization in all three seasons, but important seasonal differences were demonstrated. In children attending DCCs, we observed dynamic turnover of pneumococcal strains, especially penicillin nonsusceptible and multidrug resistant, which were mostly distributed among serotypes included to available pneumococcal conjugate vaccines

    Resistance Determinants and Their Association with Different Transposons in the Antibiotic-Resistant Streptococcus pneumoniae

    No full text
    Multiple resistance of Streptococcus pneumoniae is generally associated with their unique recombination-mediated genetic plasticity and possessing the mobile genetic elements. The aim of our study was to detect antibiotic resistance determinants and conjugative transposons in 138 antibiotic-resistant pneumococcal strains isolated from nasopharynx of healthy young children from Lublin, Poland. These strains resistant to tetracycline and/or to chloramphenicol/erythromycin/clindamycin were tested by PCR using the specific genes as markers. The presence of Tn916 family transposons, carrying tet(M) and int/xisTn916, was observed in all of the tested strains. Tn916 was detected in 16 strains resistant only to tetracycline. Tn6002 and Tn3872-related element were found among 99 erm(B)-carrying strains (83.8% and 3.0%, resp.). Eight strains harbouring mef(E) and erm(B) genes were detected, suggesting the presence of Tn2010 and Tn2017 transposons. Among 101 chloramphenicol-resistant strains, two variants of Tn5252-related transposon were distinguished depending on the presence of int/xis5252 genes specific for cat gene-containing Tn5252 (75.2% of strains) or intSp23FST81 gene, specific for cat-containing ICESp23FST81 element (24.8% of strains). In 6 strains Tn916-like and Tn5252-like elements formed a Tn5253-like structure. Besides clonal dissemination of resistant strains of pneumococci in the population, horizontal transfer of conjugative transposons is an important factor of the high prevalence of antibiotic resistance

    The In Vitro Activity of Essential Oils against Helicobacter Pylori Growth and Urease Activity

    No full text
    The anti-H. pylori properties of 26 different commercial essential oils were examined in vitro by MIC (minimal inhibitory concentration) determination for the reference strain H. pylori ATCC 43504. We selected 9 essential oils with different anti-Helicobacter activities and established their phytochemical composition and urease inhibition activities. Phytochemical analysis of the selected essential oils by GC-MS method and antioxidant activity were performed. The phenol red method was used to screen the effect of essential oils on urease activity expressed as IC50 (the half of maximal inhibitory concentration). The most active essential oils, with MIC = 15.6 mg/L, were thyme, lemongrass, cedarwood and lemon balm oils; MIC = 31.3 mg/L—oregano oil; MIC = 62.5 mg/L—tea tree oil; MIC = 125 mg/L—pine needle, lemon and silver fir oils with bactericidal effect. Urease activity was inhibited by these oils with IC50 ranged from 5.3 to > 1049.9 mg/L. The most active was cedarwood oil (IC50 = 5.3 mg/L), inhibiting urease at sub-MIC concentrations (MIC = 15.6 mg/L). The statistical principal component analysis allowed for the division of the oils into three phytochemical groups differing in their anti-H. pylori activity. To summarize, the activity in vitro of the five essential oils silver fir, pine needle, tea tree, lemongrass, and cedarwood oils against H. pylori was found in this paper for the first time. The most active against clinical strains of H. pylori were cedar wood and oregano oils. Moreover, cedarwood oil inhibited the urease activity at subinhibitory concentrations. This essential oil can be regarded as a useful component of the plant preparations supporting the eradication H. pylori therapy

    The Molecular Epidemiology of Pneumococcal Strains Isolated from the Nasopharynx of Preschool Children 3 Years after the Introduction of the PCV Vaccination Program in Poland

    No full text
    The genetic mechanisms of resistance, clonal composition, and the occurrence of pili were analyzed in 39 pneumococcal strains isolated from healthy children in the southeastern region of Poland. Strains with resistance to combinations of erythromycin, clindamycin, and tetracycline were found in clonal groups (CGs) related to Tennessee 23F-4 and Taiwan 19F-14 clones. Capsular switching possibly occurred in the Spain 9V-3 clone and its variants to serotypes 35B and 6A, as well as DLVs of Tennessee 23F-4 to serotype 23A. The double-locus variants of Colombia 23F-26 presented serotype 23B. The major transposons carrying the erythromycin and tetracycline resistance genes were Tn6002 (66.6%), followed by Tn916 (22.2%) and Tn2009 (11.1%). The macrolide efflux genetic assembly (MEGA) element was found in 41.7% of all erythromycin-resistant isolates. The majority of the isolates carrying the PI-1 gene belonged to the CGs related to the Spain 9V-3 clone expressing serotypes 35B and 6A, and the presence of both PI-1 and PI-2 was identified in CG4 consisting of the isolates related to the Taiwan 19F-14 clone expressing serotypes 19F and 19A. Importantly, in the nearest future, the piliated strains of serogroups 23B, 23A, and 35B may be of concern, being a possible origin of the emerging clones of piliated non-vaccine pneumococcal serotypes in Poland. This study reveals that nasopharyngeal carriage in children is an important reservoir for the selection and spreading of new drug-resistant pneumococcal clones in the community after the elimination of vaccine serotypes
    corecore