11 research outputs found

    Physicochemical Properties of Grain and Starch from Kanihua (chenopodium Pallidicaule) Compared with Quinoa (chenopodium Quinoa) Originated from Peru

    Get PDF
    Kanihua and quinoa are closely related Andean grains that are unconventional starch sources. Starch was extracted from two kanihua and three quinoa genotypes and their physicochemical properties (proximate analysis, scanning electron microscopy, distribution and particle size, X-ray diffraction, FTIR, solubility, swelling power, pasting and thermal properties) were investigated. Kanihua and quinoa grains presented spherical shapes and regular sizes (1.05 - 1.30 mm). The starch granules show asymmetric monomodal distribution for all cases. Meanwhile, Sauter diameter values in kanihua were smaller (0.961 ”m) than quinoa (1.099 ”m). Regarding structure, all samples showed Type A polymorphism and similar FTIR spectra behavior. In addition, amilose content was around 11-14% and 8-12% for varieties of kanihua and quinoa respectively. Starch solubilities were less than 13%, and kanihua starches had less swelling power than quinoa starches. However, the maximum swelling power values were reached around 70 °C. The variety and type of grain influenced pasting properties, with an inverse relationship between the breakdown and setback values for the evaluated starches. Analyzing the thermal properties, gelatinization enthalpy and retrogradation were similar for all starches. Even though the kanihua and quinoa starches present similar structural characteristics, the pasting properties and swelling power were different. The insight into the morphological, thermal, and pasting properties of native Chenopodium starches could be helpful in the preparation and development of new food formulations

    Impact of Emulsification Time and Concentration of Modified Starch Nanoparticles on Pickering Stability

    Get PDF
    The modification of the cassava native starch by heat-moisture treatment (HMT) followed by nanoprecipitation can be worthwhile for obtaining stabilizers of Pickering emulsions as highly stable emulsions and clean label products can be produced. In this study, Pickering emulsions stabilized by different concentrations of modified starch nanoparticles (HSNP), and various emulsification times were evaluated in terms of physical stability, rheological properties (flow curves) and microstructure. All emulsions produced with lower concentrations of HSNP (0.8 and 2.4wt%) destabilized within 24 h, and the emulsions stabilized with 3 and 4wt% HSNP, regardless of emulsification time, remained stable for up to 14 days. As the HSPN concentration increased, the interface became denser, preventing or delaying coalescence. The micrographs of the stable emulsion showed that the shorter the emulsification time (3 min), the larger the average droplet size. The Power Law model was well adjusted to the experimental data (shear stress vs shear rate) (R2 = 0.996), and the model constants (pseudoplasticity and consistency index) increased as HSNP concentration increased and emulsification time decreased. Physically modified starch nanoparticles were used as stabilizer of the Pickering O/W (oil in water) emulsion, and the results demonstrate that the microstructure and the rheological properties of these emulsions can be adjusted by particle concentration and emulsification time

    Impact of Ozone on the Rheological and Morphological Properties of Quinoa Starch

    Get PDF
    Native starch has limitations such as low water solubility and high viscosity. Ozone treatment is a green technique that can be used to modify starch by oxidation without generating waste. Quinoa starch suspensions (10wt%, db) were submitted to the modification process by the application of ozone at different times (OGT = 10, 20 and 30 min), with native starch as the control. Morphological, solubility in water (SW), swelling power (SP) and rheological characterizations were carried out to evaluate the properties of native and oxidized starches. SW values were lower (37.4%) and SP values were slightly lower (6.0%) for native starch and starch modified by 10 min of OGT, when compared to starches with 20 and 30 min of OGT. This indicates a weakening of the bonds in the crystalline region with the longest ozonation times influencing the swelling of the granules and allowing them to absorb water more easily. The rheological tests showed that all samples (5 g gelatinized starch/100 g) had pseudoplastic behavior, with increased pseudoplasticity, consistency index and apparent viscosity, with increasing OGT. The increase in rheological properties after ozone treatment can be attributed to the crosslinking effect. On the other hand, the increase in pseudoplasticity can be explained by the partial depolymerization of amorphous and crystalline lamellae compounds during starch oxidation. Frequency scanning sweep indicated that all samples exhibited weak gel behavior (storage modulus G'>G” loss modulus), without crossing of these moduli. Native starch had the highest G’ and G” values when compared to ozonized starches. No difference was observed in gelatinization temperature and granule morphology after ozone treatment. The differences in the flow and viscoelastic properties can be interesting for different applications, such as thickeners in food or cosmetics products

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≀0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Film forming solutions based on gelatin and poly(vinyl alcohol) blends: Thermal and rheological characterizations

    No full text
    The objective of this work was to study the theological and thermal properties of film forming solutions (FFS) based on blends of gelatin and poly(vinyl alcohol) (PVA). The effect of the PVA concentration and plasticizer presence on the flow behavior, and viscoelastic and thermal properties of FFS was studied by steady-shear flow and oscillatory experiments, and also, by microcalorimetry. The FB presented Newtonian behavior at 30 degrees C, and the viscosity was not affected neither by the PVA concentration nor by the plasticizer. All FFS presented a phase transition during tests applying temperature scanning. It was verified that the PVA affected the viscoelastic properties of FFS by dilution of gelatin. This behavior was confirmed by microcalorimetric analysis. The behaviors of the storage (G`) and loss (G ``) moduli as a function of frequency of FFS obtained at 5 degrees C were typical of physical gels; with the G` higher than the G ``. The strength of the gels was affected by the PVA concentration. (C) 2009 Elsevier Ltd. All rights reserved.FAPESP[05/57781-8]PV[05/54952-6]CNPqInstituto Politecnico Nacional in Mexic

    Development of films based on blends of gelatin and poly(vinyl alcohol) cross linked with glutaraldehyde

    No full text
    Both gelatin and poly(vinyl alcohol) (PVA) can be cross linked with glutaraldehyde (GLU). In the case of gelatin, the GLU reacts with each e-NH2 functional group of adjacent lysine residues, while for PVA, the GLU reacts with two adjacent hydroxyl groups, forming acetal bridges. Thus it can be considered possible to cross link adjacent macromolecules of gelatin and PVA using GLU. In this context, the aims of this work were the development of biodegradable films based on blends of gelatin and poly(vinyl alcohol) cross linked with GLU, and the characterization of some of their main physical and functional properties. All the films were produced from film-forming solutions (FFS) containing 2 g macromolecules (PVA + gelatin)/100 g FFS, 25 g glycerol/100 g macromolecules, and 4 g GLU (25% solution)/100 g FFS. The FFS were prepared with two concentrations of PVA (20 or 50 g PVA/100 g macromolecules) and two reaction temperatures: 90 or 55 degrees C, applied for 30 min. The films were obtained after drying (30 degrees C/24 h) and conditioning at 25 degrees C and 58% of relative humidity for 7 days, and were then characterized. The results for the color parameters, mechanical properties, phase transitions and infrared spectra showed that some chemical modifications occurred, principally for the gelatin. However, in general, all the characteristics of the films were either typical of films based on blends of these macromolecules without cross linking, or slightly higher. A greater improvement in the properties of this material was probably not observed due to the crystallinity of the PVA, which has a melting point above 90 degrees C. The presence of microcrystals in the polymer chain probably reduced macromolecular mobility, hindering the reaction. Thus more research is necessary to produce biodegradable films with improved properties. (C) 2011 Elsevier Ltd. All rights reserved.FAPESP[05/57781-8]FAPESP[08/53263-0]CNP
    corecore