130 research outputs found

    Antiferromagnetic phase transition in four-layered high-T_c superconductors Ba_2Ca_3Cu_4O_8(F_yO_{1-y})_2 with T_c=55-102 K: Cu- and F-NMR studies

    Full text link
    We report on magnetic characteristics in four-layered high-T_c superconductors Ba_2Ca_3Cu_4O_8(F_yO_{1-y})_2 with apical fluorine through Cu- and F-NMR measurements. The substitution of oxygen for fluorine at the apical site increases the carrier density (N_h) and T_c from 55 K up to 102 K. The NMR measurements reveal that antiferromagnetic order, which can uniformly coexist with superconductivity, exists up to N_h = 0.15, which is somewhat smaller than N_h = 0.17 being the quantum critical point (QCP) for five-layered compounds. The fact that the QCP for the four-layered compounds moves to a region of lower carrier density than for five-layered ones ensures that the decrease in the number of CuO_2 layers makes an interlayer magnetic coupling weaker.Comment: 7 pages, 6 gigures, Submitted to J. Phys. Soc. Jp

    Planar CuO_2 hole density estimation in multilayered high-T_c cuprates

    Full text link
    We report that planar CuO_2 hole densities in high-T_c cuprates are consistently determined by the Cu-NMR Knight shift. In single- and bi-layered cuprates, it is demonstrated that the spin part of the Knight shift K_s(300 K) at room temperature monotonically increases with the hole density pp from underdoped to overdoped regions, suggesting that the relationship of K_s(300 K) vs. p is a reliable measure to determine p. The validity of this K_s(300 K)-p relationship is confirmed by the investigation of the p-dependencies of hyperfine magnetic fields and of spin susceptibility for single- and bi-layered cuprates with tetragonal symmetry. Moreover, the analyses are compared with the NMR data on three-layered Ba_2Ca_2Cu_3O_6(F,O)_2, HgBa_2Ca_2Cu_3O_{8+delta}, and five-layered HgBa_2Ca_4Cu_5O_{12+delta}, which suggests the general applicability of the K_s(300 K)-p relationship to multilayered compounds with more than three CuO_2 planes. We remark that the measurement of K_s(300 K) enables us to separately estimate p for each CuO_2 plane in multilayered compounds, where doped hole carriers are inequivalent between outer CuO_2 planes and inner CuO_2 planes.Comment: 7 pages, 5 figures, 2 Tables, to be published in Physical Review

    Diamagnetism above Tc in underdoped Bi2.2Sr1.8Ca2Cu3O10+d

    Full text link
    Single crystals of Bi2+xSr2−xCa2Cu3O10+δ{\rm Bi}_{2+x}{\rm Sr}_{2-x}{\rm Ca}_{2}{\rm Cu}_{3}{\rm O}_{10+\delta}(Bi2223) with x=0.2x=0.2 were grown by a traveling solvent floating zone method in order to investigate the superconducting properties of highly underdoped Bi2223.Grown crystals were characterized by X-ray diffraction, DC susceptibility and resistivity measurements, confirming Bi2223 to be the main phase.The crystals were annealed under various oxygen partial pressures to adjust their carrier densities from optimally doped to highly underdoped.The fluctuation diamagnetic component above the superconducting transition temperature TcT_{\rm c} extracted from the anisotropic normal state susceptibilities χab(T)\chi_{ab}(T) (H⊥cH\perp c) and χc(T)\chi_{c}(T) (H∥cH\parallel c) was found to increase with underdoping, suggesting a decrease in the superconducting dimensionality and/or increase in the fluctuating vortex liquid region.Comment: 6 pages, 7 figures, corrected fig.4 and references, published in J. Phys. Soc. Jpn. 79, 114711 (2010

    Two-Dimensional Nature of Four-Layer Superconductors by Inequivalent Hole Distribution

    Full text link
    The magnetization of the four-layer superconductor CuBa_{2}Ca_{3}Cu_4O_{12-\delta} with T_c\simeq117 K is presented. The high-field magnetization around T_c(H) follows the exact two-dimensional scaling function given by Te\v{s}anovi\'{c} and Andreev. This feature is contrary to the inference that the interlayer coupling becomes strong if the number of CuO_2 planes in a unit cell increases. Also, the fluctuation-induced susceptibility in the low-field region was analyzed by using the modified Lawrence-Doniach model. The effective number of independently fluctuating CuO_2 layers per unit cell, g_{\rm eff}, turned out to be \simeq 2 rather than 4, which indicated that two among the four CuO_2 layers were in states far from their optimal doping levels. This result could explain why CuBa_{2}Ca_{3}Cu_4O_{12-\delta} shows two-dimensional behavior.Comment: 5 pages and 4 figure

    Vortex lattice structure in BaFe2(As0.67P0.33)2 by the small-angle neutron scattering technique

    Get PDF
    We have observed a magnetic vortex lattice (VL) in BaFe2(As_{0.67}P_{0.33})2 (BFAP) single crystals by small-angle neutron scattering (SANS). With the field along the c-axis, a nearly isotropic hexagonal VL was formed in the field range from 1 to 16 T, which is a record for this technique in the pnictides, and no symmetry changes in the VL were observed. The temperature-dependence of the VL signal was measured and confirms the presence of (non d-wave) nodes in the superconducting gap structure for measurements at 5 T and below. The nodal effects were suppressed at high fields. At low fields, a VL reorientation transition was observed between 1 T and 3 T, with the VL orientation changing by 45{\deg}. Below 1 T, the VL structure was strongly affected by pinning and the diffraction pattern had a fourfold symmetry. We suggest that this (and possibly also the VL reorientation) is due to pinning to defects aligned with the crystal structure, rather than being intrinsic.Comment: 9 pages, 9 figure

    Flux pinning in (1111) iron-pnictide superconducting crystals

    Get PDF
    Local magnetic measurements are used to quantitatively characterize heterogeneity and flux line pinning in PrFeAsO_1-y and NdFeAs(O,F) superconducting single crystals. In spite of spatial fluctuations of the critical current density on the macroscopic scale, it is shown that the major contribution comes from collective pinning of vortex lines by microscopic defects by the mean-free path fluctuation mechanism. The defect density extracted from experiment corresponds to the dopant atom density, which means that dopant atoms play an important role both in vortex pinning and in quasiparticle scattering. In the studied underdoped PrFeAsO_1-y and NdFeAs(O,F) crystals, there is a background of strong pinning, which we attribute to spatial variations of the dopant atom density on the scale of a few dozen to one hundred nm. These variations do not go beyond 5% - we therefore do not find any evidence for coexistence of the superconducting and the antiferromagnetic phase. The critical current density in sub-T fields is characterized by the presence of a peak effect, the location of which in the (B,T)-plane is consistent with an order-disorder transition of the vortex lattice.Comment: 12 pages, submitted to Phys Rev.

    The pairing state in KFe2As2 studied by measurements of the magnetic vortex lattice

    Full text link
    Understanding the mechanism and symmetry of electron pairing in iron-based superconductors represents an important challenge in condensed matter physics [1-3]. The observation of magnetic flux lines - "vortices" - in a superconductor can contribute to this issue, because the spatial variation of magnetic field reflects the pairing. Unlike many other iron pnictides, our KFe2As2 crystals have very weak vortex pinning, allowing small-angle-neutron-scattering (SANS) observations of the intrinsic vortex lattice (VL). We observe nearly isotropic hexagonal packing of vortices, without VL-symmetry transitions up to high fields along the fourfold c-axis of the crystals, indicating rather small anisotropy of the superconducting properties around this axis. This rules out gap nodes parallel to the c-axis, and thus d-wave and also anisotropic s-wave pairing [2, 3]. The strong temperature-dependence of the intensity down to T<<Tc indicates either widely different full gaps on different Fermi surface sheets, or nodal lines perpendicular to the axis.Comment: 13 pages, 3 figure

    Charge Imbalance Effects on Interlayer Hopping and Fermi Surfaces in Multilayered High-T_c Cuprates

    Full text link
    We study doping dependence of interlayer hoppings, t_\perp, in multilayered cuprates with four or more CuO_2 planes in a unit cell. When the double occupancy is forbidden in the plane, an effective amplitude of t_\perp in the Gutzwiller approximation is shown to be proportional to the square root of the product of doping rates in adjacent two planes, i.e., t^eff_\perp \propto t_\perp \sqrt{\delta_1\delta_2}, where \delta_1 and \delta_2 represent the doping rates of the two planes. More than three-layered cuprates have two kinds of \cuo planes, i.e., inner- and outer planes (IP and OP), resulting in two different values of t^eff_{\perp}, i.e., t^eff_\perp 1 \propto t_\perp \sqrt{\delta_IP \delta_IP} between IP's, and t^eff_\perp 2 \propto t_\perp \sqrt{\delta_IP \delta_OP} between IP and OP. Fermi surfaces are calculated in the four-layered t-t'-t''-J model by the mean-field theory. The order parameters, the renormalization factor of t_\perp, and the site-potential making the charge imbalance between IP and OP are self-consistently determined for several doping rates. We show the interlayer splitting of the Fermi surfaces, which may be observed in the angle resolved photoemission spectroscopy measurement.Comment: Some typographical errors are revised. Journal of Physical Society of Japan, Vol.75, No.3, in pres

    The Influence of Neutron Irradiation on (B0.65C0.35)Ba1.4Sr0.6Ca2Cu3Oz Superconducting Phase: the Role of the Grain Edge

    Full text link
    Using the transport and magnetization measurements the influence of neutron irradiation at a fluence of 5x1017^{17} n cm−2^{-2} on (B0.65C0.35)Ba1.4Sr0.6Ca2Cu3Oz has been investigated. The neutron irradiation was found to decrease critical temperature and transport critical current density, increase the residual and normal state resistivity, and improve the intragranular critical current density with 1.6x1057^{57} A/cm2^{2} (at 77.3K and in the applied field up to 160 kA m) and \Delta Mirr/\Delta Mnonirr ratio (up to factor of 3) at highest field used for investigation. The field dependence of this ratio, which is below the unity at very low field but higher than 1 at high fields, correlated with the shape of the hystertic loops as well as with the change of the transport parameters after irradiation suggests the role of the irradiation induced effects on the grain edges. We discuss these effects in the framework of the Bean-Livingstone surface barriers and geometrical barriers.Comment: 12 pages, 5 figure
    • …
    corecore