291 research outputs found

    Miniature gastrointestinal endoscopy: Now and the future

    Get PDF
    Since its original application, gastrointestinal (GI) endoscopy has undergone many innovative transformations aimed at expanding the scope, safety, accuracy, acceptability and cost-effectiveness of this area of clinical practice. One method of achieving this has been to reduce the caliber of endoscopic devices. We propose the collective term "Miniature GI Endoscopy". In this Opinion Review, the innovations in this field are explored and discussed. The progress and clinical use of the three main areas of miniature GI endoscopy (ultrathin endoscopy, wireless endoscopy and scanning fiber endoscopy) are described. The opportunities presented by these technologies are set out in a clinical context, as are their current limitations. Many of the positive aspects of miniature endoscopy are clear, in that smaller devices provide access to potentially all of the alimentary canal, while conferring high patient acceptability. This must be balanced with the costs of new technologies and recognition of device specific challenges. Perspectives on future application are also considered and the efforts being made to bring new innovations to a clinical platform are outlined. Current devices demonstrate that miniature GI endoscopy has a valuable place in investigation of symptoms, therapeutic intervention and screening. Newer technologies give promise that the potential for enhancing the investigation and management of GI complaints is significant

    Acceptability, Accuracy and Safety of Disposable Transnasal Capsule Endoscopy for Barrett’s Esophagus Screening

    Get PDF
    BACKGROUND & AIMS: Screening for Barrett's esophagus (BE) with conventional esophagogastroduodenoscopy (C-EGD) is expensive. We assessed the performance of a clinic-based, single use transnasal capsule endoscope (EG Scan II) for the detection of BE, compared to C-EGD as the reference standard. METHODS: We performed a prospective multicenter cohort study of patients with and without BE recruited from 3 referral centers (1 in the United States and 2 in the United Kingdom). Of 200 consenting participants, 178 (89%) completed both procedures (11% failed EG Scan due to the inability to intubate the nasopharynx). The mean age of participants was 57.9 years and 67% were male. The prevalence of BE was 53%. All subjects underwent the 2 procedures on the same day, performed by blinded endoscopists. Patients completed preference and validated tolerability (10-point visual analogue scale [VAS]) questionnaires within 14 days of the procedures. RESULTS: A higher proportion of patients preferred the EG Scan (54.2%) vs the C-EGD (16.7%) (P<.001) and the EG Scan had a higher VAS score (7.2) vs the C-EGD (6.4) (P=.0004). No serious adverse events occurred. The EG Scan identified any length BE with a sensitivity value of 0.90 (95% CI, 0.83-0.96) and a specificity value of 0.91 (95% CI, 0.82-0.96). The EG Scan identified long segment BE with a sensitivity value of 0.95 and short segment BE with a sensitivity values of 0.87. CONCLUSION: In a prospective study, we found the EG Scan to be safe and to detect BE with higher than 90% sensitivity and specificity. A higher proportion of patients preferred the EG Scan to C-EGD. This device might be used as a clinic-based tool to screen populations at risk for BE. ISRCTN registry identifier: 70595405; ClinicalTrials.gov no: NCT02066233

    Quantitative High-Throughput Screen Identifies Inhibitors of the Schistosoma mansoni Redox Cascade

    Get PDF
    Schistosomiasis is a tropical disease associated with high morbidity and mortality, currently affecting over 200 million people worldwide. Praziquantel is the only drug used to treat the disease, and with its increased use the probability of developing drug resistance has grown significantly. The Schistosoma parasites can survive for up to decades in the human host due in part to a unique set of antioxidant enzymes that continuously degrade the reactive oxygen species produced by the host's innate immune response. Two principal components of this defense system have been recently identified in S. mansoni as thioredoxin/glutathione reductase (TGR) and peroxiredoxin (Prx) and as such these enzymes present attractive new targets for anti-schistosomiasis drug development. Inhibition of TGR/Prx activity was screened in a dual-enzyme format with reducing equivalents being transferred from NADPH to glutathione via a TGR-catalyzed reaction and then to hydrogen peroxide via a Prx-catalyzed step. A fully automated quantitative high-throughput (qHTS) experiment was performed against a collection of 71,028 compounds tested as 7- to 15-point concentration series at 5 µL reaction volume in 1536-well plate format. In order to generate a robust data set and to minimize the effect of compound autofluorescence, apparent reaction rates derived from a kinetic read were utilized instead of end-point measurements. Actives identified from the screen, along with previously untested analogues, were subjected to confirmatory experiments using the screening assay and subsequently against the individual targets in secondary assays. Several novel active series were identified which inhibited TGR at a range of potencies, with IC50s ranging from micromolar to the assay response limit (∼25 nM). This is, to our knowledge, the first report of a large-scale HTS to identify lead compounds for a helminthic disease, and provides a paradigm that can be used to jump-start development of novel therapeutics for other neglected tropical diseases

    Unfavourable expression of pharmacologic markers in mucinous colorectal cancer

    Get PDF
    Patients with mucinous colorectal cancer generally have worse prognoses than those with the nonmucinous variety. The reason for this disparity is unclear, but may result from a differential response to adjuvant chemotherapy. We examined known molecular markers for response to common chemotherapy in these two histological subtypes. In all, 21 patients with mucinous and 30 with nonmucinous Dukes C colorectal cancer were reviewed for demographic data and outcome. Total RNA from the tumours and adjacent normal mucosa was isolated and reverse transcribed. Quantitative expression levels of drug pathway genes were determined using TaqMan RT–PCR (5-fluorouracil (5-FU): TYMS, DPYD, ECGF1; oxaliplatin: GSTP1 (glutathione S-transferase pi), ERCC1 and 2; irinotecan: ABCB1, ABCG2, CYP3A4, UGT1A1, CES2, TOP1). Mucinous tumours significantly overexpressed both TYMS and GSTP1 relative to nonmucinous tumours and patient-matched normal mucosa. No significant differences in expression of the remaining markers were found. Mean follow-up was 20 months; 17 patients had recurrent disease. Among patients receiving 5-FU, those with mucinous tumours experienced shorter disease-free survival (DFS) than those with nonmucinous tumours (median DFS 13.8 vs 46.5 months, P=0.053). Mucinous colorectal cancer overexpresses markers of resistance to 5-FU and oxaliplatin. Likewise, DFS may be decreased in patients with mucinous tumours who receive 5-FU. The presence of mucin should be carefully evaluated in developmental trials of new agents for treating colorectal cancer

    Stability and inheritance of endosperm-specific expression of two transgenes in progeny from crossing independently transformed barley plants

    Get PDF
    To study stability and inheritance of two different transgenes in barley, we crossed a homozygous T8 plant, having uidA (or gus) driven by the barley endosperm-specific B1-hordein promoter (localized in the near centromeric region of chromosome 7H) with a second homozygous T4 plant, having sgfp(S65T) driven by the barley endosperm-specific D-hordein promoter (localized on the subtelomeric region of chromosome 2H). Both lines stably expressed the two transgenes in the generations prior to the cross. Three independently crossed F1 progeny were analyzed by PCR for both uidA and sgfp(S65T) in each plant and functional expression of GUS and GFP in F2 seeds followed a 3:1 Mendelian segregation ratio and transgenes were localized by FISH to the same location as in the parental plants. FISH was used to screen F2 plants for homozygosity of both transgenes; four homozygous plants were identified from the two crossed lines tested. FISH results showing presence of transgenes were consistent with segregation ratios of expression of both transgenes, indicating that the two transgenes were expressed without transgene silencing in homozygous progeny advanced to the F3 and F4 generations. Thus, even after crossing independently transformed, homozygous parental plants containing a single, stably expressed transgene, progeny were obtained that continued to express multiple transgenes through generation advance. Such stability of transgenes, following outcrossing, is an important attribute for trait modification and for gene flow studies

    Germline variation in the insulin-like growth factor pathway and risk of Barrett's esophagus and esophageal adenocarcinoma

    Get PDF
    Genome-wide association studies (GWAS) of esophageal adenocarcinoma (EAC) and its precursor, Barrett’s esophagus (BE), have uncovered significant genetic components of risk, but most heritability remains unexplained. Targeted assessment of genetic variation in biologically relevant pathways using novel analytical approaches may identify missed susceptibility signals. Central obesity, a key BE/EAC risk factor, is linked to systemic inflammation, altered hormonal signaling and insulin-like growth factor (IGF) axis dysfunction. Here, we assessed IGF-related genetic variation and risk of BE and EAC. Principal component analysis was employed to evaluate pathway-level and gene-level associations with BE/EAC, using genotypes for 270 single-nucleotide polymorphisms (SNPs) in or near 12 IGF-related genes, ascertained from 3295 BE cases, 2515 EAC cases and 3207 controls in the Barrett’s and Esophageal Adenocarcinoma Consortium (BEACON) GWAS. Gene-level signals were assessed using Multi-marker Analysis of GenoMic Annotation (MAGMA) and SNP summary statistics from BEACON and an expanded GWAS meta-analysis (6167 BE cases, 4112 EAC cases, 17 159 controls). Global variation in the IGF pathway was associated with risk of BE (P = 0.0015). Gene-level associations with BE were observed for GHR (growth hormone receptor; P = 0.00046, false discovery rate q = 0.0056) and IGF1R (IGF1 receptor; P = 0.0090, q = 0.0542). These gene-level signals remained significant at q < 0.1 when assessed using data from the largest available BE/EAC GWAS meta-analysis. No significant associations were observed for EAC. This study represents the most comprehensive evaluation to date of inherited genetic variation in the IGF pathway and BE/EAC risk, providing novel evidence that variation in two genes encoding cell-surface receptors, GHR and IGF1R, may influence risk of BE

    Reactive oxygen species in phagocytic leukocytes

    Get PDF
    Phagocytic leukocytes consume oxygen and generate reactive oxygen species in response to appropriate stimuli. The phagocyte NADPH oxidase, a multiprotein complex, existing in the dissociated state in resting cells becomes assembled into the functional oxidase complex upon stimulation and then generates superoxide anions. Biochemical aspects of the NADPH oxidase are briefly discussed in this review; however, the major focus relates to the contributions of various modes of microscopy to our understanding of the NADPH oxidase and the cell biology of phagocytic leukocytes

    HGF/SF and its receptor c-MET play a minor role in the dissemination of human B-lymphoma cells in SCID mice

    Get PDF
    The MET protooncogene, c-MET, encodes a cell surface tyrosine kinase receptor. The ligand for c-MET is hepatocyte growth factor (HGF), also known as scatter factor (SF), which is known to affect proliferation and motility of primarily epithelial cells. Recently, HGF/SF was also shown to affect haemopoiesis. Studies with epithelial and transfected NIH3T3 cells indicated that the HGF/SF–c-MET interaction promotes invasion in vitro and in vivo. We previously demonstrated that HGF/SF induces adhesion of c-MET-positive B-lymphoma cells to extracellular matrix molecules, and promoted migration and invasion in in vitro assays. Here, the effect of HGF/SF on tumorigenicity of c-MET-positive and c-MET-negative human B-lymphoma cell lines was studied in C.B-17 scid/scid (severe combined immune deficient) mice. Intravenously (i.v.) injected c-MET-positive (BJAB) as well as c-MET-negative (Daudi and Ramos cells) B-lymphoma cells formed tumours in SCID mice. The B-lymphoma cells invaded different organs, such as liver, kidney, lymph nodes, lung, gonads and the central nervous system. We assessed the effect of human HGF/SF on the dissemination of the B-lymphoma cells and found that administration of 5 μg HGF/SF to mice, injected (i.v.) with c-MET-positive lymphoma cells, significantly (P = 0.018) increased the number of metastases in lung, liver and lymph nodes. In addition, HGF/SF did not significantly influence dissemination of c-MET-negative lymphoma cells (P = 0.350 with Daudi cells and P = 0.353 with Ramos cells). Thus the effect of administration of HGF/SF on invasion of lymphoma cells is not an indirect one, e.g. via an effect on endothelial cells. Finally, we investigated the effect of HGF/SF on dissemination of c-MET-transduced Ramos cells. In response to HGF/SF, c-MET-transduced Ramos cells showed an increased migration through Matrigel in Boyden chambers compared to wild-type and control-transduced Ramos cells. The dissemination pattern of c-MET-transduced cells did not differ from control cells in in vivo experiments using SCID mice. Also no effect of HGF/SF administration could be documented, in contrast to the in vitro experiments. From our experiments can be concluded that the HGF/SF–c-MET interaction only plays a minor role in the dissemination of human B-lymphoma cells. © 1999 Cancer Research Campaig

    The African Esophageal Cancer Consortium: A Call to Action.

    Get PDF
    Esophageal cancer is the eighth most common cancer worldwide and the sixth most common cause of cancer-related death; however, worldwide incidence and mortality rates do not reflect the geographic variations in the occurrence of this disease. In recent years, increased attention has been focused on the high incidence of esophageal squamous cell carcinoma (ESCC) throughout the eastern corridor of Africa, extending from Ethiopia to South Africa. Nascent investigations are underway at a number of sites throughout the region in an effort to improve our understanding of the etiology behind the high incidence of ESCC in this region. In 2017, these sites established the African Esophageal Cancer Consortium. Here, we summarize the priorities of this newly established consortium: to implement coordinated multisite investigations into etiology and identify targets for primary prevention; to address the impact of the clinical burden of ESCC via capacity building and shared resources in treatment and palliative care; and to heighten awareness of ESCC among physicians, at-risk populations, policy makers, and funding agencies.The African Esophageal Cancer Consortium is supported jointly by the International Agency for Research on Cancer and the Division of Cancer Epidemiology and Genetics of the Intramural Research Program of the National Cancer Institute

    Outer membrane protein folding from an energy landscape perspective

    Get PDF
    The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding
    corecore