3 research outputs found
Предварительный выбор сигнала для мониторинга и прогнозирования старения компонентов силовой передачи автомобиля
Predictive maintenance has become important for avoiding unplanned downtime of modern vehicles. With increasing functionality the exchanged data between Electronic Control Units (ECU) grows simultaneously rapidly. A large number of in-vehicle signals are provided for monitoring an aging process. Various components of a vehicle age due to their usage. This component aging is only visible in a certain number of in-vehicle signals. In this work, we present a signal selection method for in-vehicle signals in order to determine relevant signals to monitor and predict powertrain component aging of vehicles. Our application considers the aging of powertrain components with respect to clogging of structural components. We measure the component aging process in certain time intervals. Owing to this, unevenly spaced time series data is preprocessed to generate comparable in-vehicle data. First, we aggregate the data in certain intervals. Thus, the dynamic in-vehicle database is reduced which enables us to analyze the signals more efficiently. Secondly, we implement machine learning algorithms to generate a digital model of the measured aging process. With the help of Local Interpretable Model-Agnostic Explanations (LIME) the model gets interpretable. This allows us to extract the most relevant signals and to reduce the amount of processed data. Our results show that a certain number of in-vehicle signals are sufficient for predicting the aging process of the considered structural component. Consequently, our approach allows to reduce data transmission of in-vehicle signals with the goal of predictive maintenance.Прогнозное техническое обслуживание является важным для предотвращения незапланированных простоев современных транспортных средств. С расширением функциональности одновременно происходит быстрый рост обмена данными между электронными блоками управления. Большое количество бортовых сигналов позволяет осуществлять мониторинг процесса старения. Старение компонентов автомобиля зависит от того, как они используются. Элементы старения выявляются благодаря наличию ряда бортовых сигналов. В данной статье предложен метод выбора бортовых сигналов с целью определения соответствующих для проведения мониторинга и прогнозирования старения компонентов силовой передачи транспортных средств. Процесс старения рассматривается на основе степени засорения конструктивных элементов. Измерение процесса старения компонентов осуществляется в определенные промежутки времени. Благодаря такому подходу данные, полученные в неравномерно распределенные промежутки времени, предварительно обрабатываются для формирования сравниваемых бортовых показателей. На первом этапе агрегируем данные в определенные интервалы. Тем самым динамическая база бортовых данных уменьшается, что позволяет более эффективно анализировать сигналы. Также используем алгоритм машинного обучения с целью создания цифровой модели для измерения процесса старения. С помощью методологии локальных интерпретируемых модельно-агностических объяснений модель становится интерпретируемой. Это позволяет извлекать наиболее релевантные сигналы и тем самым сокращать объем обрабатываемых данных. Полученные результаты показывают, что для прогнозирования процесса старения рассматриваемого структурного компонента достаточно определенного количества бортовых сигналов. Таким образом, предлагаемый подход позволяет сократить передачу данных бортовых сигналов для проведения профилактического обслуживания
Signal Pre-Selection for Monitoring and Prediction of Vehicle Powertrain Component Aging
Predictive maintenance has become important for avoiding unplanned downtime of modern vehicles. With increasing functionality the exchanged data between Electronic Control Units (ECU) grows simultaneously rapidly. A large number of in-vehicle signals are provided for monitoring an aging process. Various components of a vehicle age due to their usage. This component aging is only visible in a certain number of in-vehicle signals. In this work, we present a signal selection method for in-vehicle signals in order to determine relevant signals to monitor and predict powertrain component aging of vehicles. Our application considers the aging of powertrain components with respect to clogging of structural components. We measure the component aging process in certain time intervals. Owing to this, unevenly spaced time series data is preprocessed to generate comparable in-vehicle data. First, we aggregate the data in certain intervals. Thus, the dynamic in-vehicle database is reduced which enables us to analyze the signals more efficiently. Secondly, we implement machine learning algorithms to generate a digital model of the measured aging process. With the help of Local Interpretable Model-Agnostic Explanations (LIME) the model gets interpretable. This allows us to extract the most relevant signals and to reduce the amount of processed data. Our results show that a certain number of in-vehicle signals are sufficient for predicting the aging process of the considered structural component. Consequently, our approach allows to reduce data transmission of in-vehicle signals with the goal of predictive maintenance
Предварительный выбор сигнала для мониторинга и прогнозирования старения компонентов силовой передачи автомобиля
Predictive maintenance has become important for avoiding unplanned downtime of modern vehicles. With increasing functionality the exchanged data between Electronic Control Units (ECU) grows simultaneously rapidly. A large number of in-vehicle signals are provided for monitoring an aging process. Various components of a vehicle age due to their usage. This component aging is only visible in a certain number of in-vehicle signals. In this work, we present a signal selection method for in-vehicle signals in order to determine relevant signals to monitor and predict powertrain component aging of vehicles. Our application considers the aging of powertrain components with respect to clogging of structural components. We measure the component aging process in certain time intervals. Owing to this, unevenly spaced time series data is preprocessed to generate comparable in-vehicle data. First, we aggregate the data in certain intervals. Thus, the dynamic in-vehicle database is reduced which enables us to analyze the signals more efficiently. Secondly, we implement machine learning algorithms to generate a digital model of the measured aging process. With the help of Local Interpretable Model-Agnostic Explanations (LIME) the model gets interpretable. This allows us to extract the most relevant signals and to reduce the amount of processed data. Our results show that a certain number of in-vehicle signals are sufficient for predicting the aging process of the considered structural component. Consequently, our approach allows to reduce data transmission of in-vehicle signals with the goal of predictive maintenance