82 research outputs found

    Properties of arctic haze aerosol from lidar observations during iarea 2015 campaign on spitsbergen

    Get PDF
    Arctic Haze event was observed on 5-8 April 2015 using simultaneously Near-range Aerosol Raman Lidar of IGFUW and Koldewey Aerosol Raman Lidar of AWI, both based at AWIPEV German-French station in Ny-Ã…lesund, Spitsbergen. The alterations in particle abundance and altitude of the aerosol load observed on following days of the event is analyzed. The daytime profiles of particle optical properties were obtained for both lidars, and then served as input for microphysical parameters inversion. The results indicate aerosol composition typical for the Arctic Haze. However, in some layers, a likely abundance of aqueous aerosol or black carbon originating in biomass burning over Siberia, changes measurably the Arctic Haze properties

    First Ever Observations of Mineral Dust in Wintertime over Warsaw, Poland

    Get PDF
    The long-range transport of desert dust over the area of the temperate climate zone is associated with the influx of hot air masses due to the location of the sources of this aerosol in the tropical climate zone. Between 24–26 February 2021, such an aerosol outbreak took place and reached Central Europe. The mean temperature of +11.7 °C was recorded during the event. A comparison of this value to the 20-year (2000–2020) average February temperature for Warsaw (−0.2 °C) indicates the uniqueness of the meteorological conditions. It was the first wintertime inflow of Saharan dust over Warsaw, the presence of which was confirmed by lidar and sun-photometer measurements. The properties of the desert dust layers were obtained; the mean values of the particle depolarization for the fully developed mineral dust layer were 13 ± 3% and 22 ± 4% for 355 and 532 nm, respectively. The aerosol optical thickness was high with average values >0.36 for all wavelengths smaller than 500 nm. The three-modal, aerosol size distribution was dominated by coarse-mode particles, with a visible contribution of accumulation-mode particles. It suggests the possible presence of other aerosol types

    Study case of air-mass modification over Poland and Romania observed by the means of multiwavelength Raman depolarization lidars

    Get PDF
    An air-mass modification, on its way from Poland to Romania, observed between 19-21 July 2014 is discussed. The air-mass was investigated using data of two multi-wavelength lidars capable of performing regular elastic, depolarization and Raman measurements in Warsaw, Poland, and in Magurele, Romania. The analysis was focused on evaluating optical properties of aerosol in order to search for similarities and differences in the vertical profiles describing the atmospheric layers above the two stations within given period

    Biomass burning events measured by lidars in EARLINET. Part II. Results and discussions,

    Get PDF
    Biomass burning events are analysed using the European Aerosol Research Lidar Network database for atmospheric profiling of aerosols by lidars. Atmospheric profiles containing forest fires layers were identified in data collected by fourteen stations during 2008–2017. The data ranged from complete data sets (particle backscatter coefficient, extinction coefficient and linear depolarization ratio) to single profiles (particle backscatter coefficient). The data analysis methodology was described in Part I (Biomass burning events measured by lidars in EARLINET. Part I. Data analysis methodology, under discussions to ACP, the EARLINET special issue). The results are analysed by means of intensive parameters in three directions: (I) common biomass burning source (fire) recorded by at least two stations, (II) long range transport of smoke particles from North America (here, we divided the events into "pure North America" and "mixed"-North America and local) smoke groups, and (III) analysis of smoke particles over four geographical regions (SE Europe, NE Europe, Central Europe and SW Europe). Five events were found for case (I), while 24 events were determined for case (II). A statistical analysis over the four geographical regions considered revealed that smoke originated from different regions. The smoke detected in the Central Europe region (Cabauw, Leipzig, and Hohenpeißenberg) was mostly brought over from North America (87 % of the fires), by long range transport. The smoke in the South West region (Barcelona, Evora, and Granada) came mostly from the Iberian Peninsula and North Africa, the long-range transport from North America accounting for only 9 % here. The smoke in the North Europe region (Belsk, Minsk, and Warsaw) originated mostly in East Europe (Ukraine and Russia), and had a 31 % contribution from smoke by long-range transport from North America. For the South East region (Athens, Bucharest, Potenza, Sofia, Thessaloniki) the origin of the smoke was mostly located in SE Europe (only 3 % from North America). Specific features for the lidar-derived intensive parameters based on smoke continental origin were determined for each region. Based on the whole dataset, the following signatures were observed: (i) the colour ratio of the lidar ratio and the backscatter Ångström exponent increase with travel time, while the extinction Ångström exponent and the colour ratio of the particle depolarization ratio decrease; (ii) an increase of the colour ratio of the particle depolarization ratio corresponds to both a decrease of the colour ratio of the lidar ratios and an increase of the extinction Ångström exponent; (iii) the measured smoke originating from all continental regions is characterized in average as aged smoke, except for a few cases; (iv) in general, the local smoke shows a smaller lidar ratio while the long range transported smoke shows a higher lidar ratio; and (v) the depolarization is smaller for long range transported smoke. A complete characterization of the smoke particles type (either fresh or aged) is presented for each of the four geographical regions versus different continental source regions

    The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation

    Get PDF
    The atmospheric science community demands autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from the EARLINET community, involvement in worldwide field campaigns, and international institute collaborations within the last 10 years. Here we present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study. The latest system developments include an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization ratio at 355 and 532 nm. Quality improvements were achieved by systematically following the EARLINET guidelines and the international PollyNET quality assurance developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows for 24∕7 monitoring of the atmospheric state with PollyXT
    • …
    corecore