86 research outputs found
On-Demand Drug Delivery: Recent Advances in Cardiovascular Applications
Cardiovascular diseases (CVD), including life-threatening atherosclerosis and arterial thrombosis, account for almost 50% of all deaths in Europe and around 30% of all deaths worldwide. Despite the ongoing improvement and accessibility of invasive cardiovascular interventions and pharmacological therapies, pathological processes often progress asymptomatically, before manifesting themselves as unstable angina pectoris, myocardial infarction, sudden cardiac death or stroke. Since atherosclerosis and thrombosis represent localized disease processes, insufficient response to systemically-administered drugs is a common problem. The available pharmacological therapies are often burdened by poor tolerability, limited efficacy and/or bioavailability. Although encapsulating drugs in a nanoscale shell increases their circulation time and availability, it does not guarantee disease-specific targeting, or the proper control of the drug release. In contrast, on-demand drug delivery has the advantage of localized treatment and allows reducing off-target effects by a stimuli-controlled drug release in the affected region. Such “smart” systems are expected to have a great therapeutic potential in CVD. This mini-review article highlights recent advances in stimuli-responsive drug delivery approaches to CVD, with specific drug release triggered either internally or externally
Magnetic Accumulation of SPIONs under Arterial Flow Conditions: Effect of Serum and Red Blood Cells
Magnetic drug targeting utilizes an external magnetic field to target superparamagnetic iron oxide nanoparticles (SPIONs) and their cargo to the diseased vasculature regions. In the arteries, the flow conditions affect the behavior of magnetic particles and the efficacy of their accumulation. In order to estimate the magnetic capture of SPIONs in more physiological-like settings, we previously established an ex vivo model based on human umbilical cord arteries. The artery model was employed in our present studies in order to analyze the effects of the blood components on the efficacy of magnetic targeting, utilizing 2 types of SPIONs with different physicochemical characteristics. In the presence of freshly isolated human plasma or whole blood, a strong increase in iron content measured by AES was observed for both particle types along the artery wall, in parallel with clotting activation due to endogenous thrombin generation in plasma. Subsequent studies therefore utilized SPION suspensions in serum and washed red blood cells (RBCs) at hematocrit 50%. Interestingly, in contrast to cell culture medium suspensions, magnetic accumulation of circulating SPION-3 under the external magnet was achieved in the presence of RBCs. Taken together, our data shows that the presence of blood components affects, but does not prevent, the magnetic accumulation of circulating SPIONs
Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction
Hydroxyapatite-coated SPIONs and their influence on cytokine release
Hydroxyapatite- or calcium phosphate-coated iron oxide nanoparticles have a high potential for use in many biomedical applications. In this study, a co-precipitation method for the synthesis of hydroxyapatite-coated nanoparticles (SPIONHAp), was used. The produced nanoparticles have been characterized by dynamic light scattering, X-ray diffraction, vibrating sample magnetometry, Fourier transform infrared spectrometry, atomic emission spectroscopy, scanning electron microscopy, transmission electron microscopy, selected area diffraction, and energy-dispersive X-ray spectroscopy. The results showed a successful synthesis of 190 nm sized particles and their stable coating, resulting in SPIONHAp. Potential cytotoxic effects of SPIONHAp on EL4, THP-1, and Jurkat cells were tested, showing only a minor effect on cell viability at the highest tested concentration (400 [my]g Fe/mL). The results further showed that hydroxyapatite-coated SPIONs can induce minor TNF-α and IL-6 release by murine macrophages at a concentration of 100 [my]g Fe/mL. To investigate if and how such particles interact with other substances that modulate the immune response, SPIONHAp-treated macrophages were incubated with LPS (lipopolysaccharides) and dexamethasone. We found that cytokine release in response to these potent pro- and anti-inflammatory agents was modulated in the presence of SPIONHAp. Knowledge of this behavior is important for the management of inflammatory processes following in vivo applications of this type of SPIONs
Extramedullary plasmacytoma: Tumor occurrence and therapeutic concepts—A follow-up
Background
Extramedullary plasmacytoma (EMP) is a solitary tumor consisting of neoplastic plasma cells, with very little to no bone marrow involvement. EMPs are usually located in the head and neck region, but can also occur along the digestive tract, in lungs, or extremities.
Methods
Following our publication on EMP, which appeared in 1999 (Cancer 85:2305–14), we conducted a literature search for EMP-related reports published between 1999 and 2021. The documented cases, as well as 14 of our own patients from the ENT Clinic Erlangen, were extensively analyzed.
Results
Between 1998 and 2021, 1134 patients with EMP were reported, for whom information about the tumor localization was available. Among those, 62.4% had EMP in the head and neck area and 37.6% in other body regions. Data on therapy were reported in 897 patients, including 34.3% who received radiation, 28.1% surgery, 22.6% a combination of surgery and radiation, and 15.9% another therapy. In 76.9% patients no recurrence or transformation to multiple myeloma (MM) was reported, 12.8% showed local recurrence and 10.2% developed MM. Radiotherapy alone was associated with a tendency for increased occurrence of MM. In patients with EMP of head and neck area, combination therapy (surgery and radiation) resulted in a 5-year overall survival rate of 98.3%, surgery alone of 92.4%, and radiotherapy of 92.7%.
Conclusions
Collectively, our analyses indicate that surgical resection alone can achieve long-term tumor control in patients with EMP, if the tumor can be removed within safe limits without causing serious functional impairment. However, if this is not certain, either radiation or a combination of surgery and radiation therapy is suggested as an effective means of local tumor control
- …