41 research outputs found

    Genotype-phenotype correlations of TGFBI p.Leu509Pro, p.Leu509Arg, p.Val613Gly, and the allelic association of p.Met502Val-p.Arg555Gln mutations.

    Get PDF
    Investigate the genotype-phenotype correlations for five TGFBI (transforming growth factor, beta-induced) mutations including one novel pathogenic variant and one complex allele affecting the fourth FAS1 domain of keratoepithelin, and their potential effects on the protein's structure. Three unrelated families were clinically diagnosed with lattice corneal dystrophy (CD) and one with an unclassified CD of Bowman's layer. Mutations in the TGFBI gene were detected by direct sequencing, and the functional impact of each variant was predicted using in silico algorithms. Corneal phenotypes, including histological examinations, were compared with the literature data. Furthermore, molecular modeling studies of these mutations were performed. Two distinct missense mutations affecting the same residue at position 509 of keratoepithelin: p.Leu509Pro (c.1526T>C) and p.Leu509Arg (c.1526T>G) were found to be associated with a lattice-type CD. The novel p.Val613Gly (c.1828T>G) TGFBI mutation was found in a sporadic case of an Algerian individual affected by lattice CD. Finally, the Bowman's layer CD was linked to the association in cis of the p.Met502Val and p.Arg555Gln variants, leading to the reclassification of this CD as atypical Thiel-Behnke CD. Structural modeling of these TGFBI mutations argues in favor of these mutations being responsible for instability and/or incorrect folding of keratoepithelin, predictions that are compatible with the clinical diagnoses. Description of a novel TGFBI mutation and a complex TGFBI allele further extends the mutational spectrum of TGFBI. Moreover, we show convincing evidence that TGFBI mutations affecting Leu509 are linked to the lattice phenotype in two unrelated French families, contrasting with findings previously reported. The p.Leu509Pro was reported to be associated with both amyloid and non-amyloid aggregates, whereas p.Leu509Arg has been described as being responsible for Epithelial Basement Membrane Dystrophy (EBMD)

    De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects

    Get PDF
    Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function

    De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects.

    Get PDF
    Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    Mutations of the Serine Protease CAP1/Prss8 Lead to Reduced Embryonic Viability, Skin Defects, and Decreased ENaC Activity.

    Get PDF
    CAP1/Prss8 is a membrane-bound serine protease involved in the regulation of several different effectors, such as the epithelial sodium channel ENaC, the protease-activated receptor PAR2, the tight junction proteins, and the profilaggrin polypeptide. Recently, the V170D and the G54-P57 deletion mutations within the CAP1/Prss8 gene, identified in mouse frizzy (fr) and rat hairless (fr(CR)) animals, respectively, have been proposed to be responsible for their skin phenotypes. In the present study, we analyzed those mutations, revealing a change in the protein structure, a modification of the glycosylation state, and an overall reduction in the activation of ENaC of the two mutant proteins. In vivo analyses demonstrated that both fr and fr(CR) mutant animals present analogous reduction of embryonic viability, similar histologic aberrations at the level of the skin, and a significant decrease in the activity of ENaC in the distal colon compared with their control littermates. Hairless rats additionally had dehydration defects in skin and intestine and significant reduction in the body weight. In conclusion, we provided molecular and functional evidence that CAP1/Prss8 mutations are accountable for the defects in fr and fr(CR) animals, and we furthermore demonstrate a decreased function of the CAP1/Prss8 mutant proteins. Therefore, fr and fr(CR) animals are suitable models to investigate the consequences of CAP1/Prss8 action on its target proteins in the whole organism

    The CAP1/Prss8 catalytic triad is not involved in PAR2 activation and protease nexin-1 (PN-1) inhibition.

    No full text
    Serine proteases, serine protease inhibitors, and protease-activated receptors (PARs) are responsible for several human skin disorders characterized by impaired epidermal permeability barrier function, desquamation, and inflammation. In this study, we addressed the consequences of a catalytically dead serine protease on epidermal homeostasis, the activation of PAR2 and the inhibition by the serine protease inhibitor nexin-1. The catalytically inactive serine protease CAP1/Prss8, when ectopically expressed in the mouse, retained the ability to induce skin disorders as well as its catalytically active counterpart (75%, n=81). Moreover, this phenotype was completely normalized in a PAR2-null background, indicating that the effects mediated by the catalytically inactive CAP1/Prss8 depend on PAR2 (95%, n=131). Finally, nexin-1 displayed analogous inhibitory capacity on both wild-type and inactive mutant CAP1/Prss8 in vitro and in vivo (64% n=151 vs. 89% n=109, respectively), indicating that the catalytic site of CAP1/Prss8 is dispensable for nexin-1 inhibition. Our results demonstrate a novel inhibitory interaction between CAP1/Prss8 and nexin-1, opening the search for specific CAP1/Prss8 antagonists that are independent of its catalytic activity.-Crisante, G., Battista, L., Iwaszkiewicz, J., Nesca, V., Mérillat, A.-M., Sergi, C., Zoete, V., Frateschi, S., Hummler, E. The CAP1/Prss8 catalytic triad is not involved in PAR2 activation and protease nexin-1 (PN-1) inhibition

    Actin assembly requirements of the formin Fus1 to build the fusion focus.

    No full text
    In formin-family proteins, actin filament nucleation and elongation activities reside in the formin homology 1 (FH1) and FH2 domains, with reaction rates that vary by at least 20-fold between formins. Each cell expresses distinct formins that assemble one or several actin structures, raising the question of what confers each formin its specificity. Here, using the formin Fus1 in Schizosaccharomyces pombe, we systematically probed the importance of formin nucleation and elongation rates in vivo. Fus1 assembles the actin fusion focus, necessary for gamete fusion to form the zygote during sexual reproduction. By constructing chimeric formins with combinations of FH1 and FH2 domains previously characterized in vitro, we establish that changes in formin nucleation and elongation rates have direct consequences on fusion focus architecture, and that Fus1 native high nucleation and low elongation rates are optimal for fusion focus assembly. We further describe a point mutant in Fus1 FH2 that preserves native nucleation and elongation rates in vitro but alters function in vivo, indicating an additional FH2 domain property. Thus, rates of actin assembly are tailored for assembly of specific actin structures
    corecore