1,273 research outputs found

    Cortical electrical activity changes in healthy aging using EEG-eLORETA analysis

    Full text link
    Brain aging causes loss of synaptic spines, neuronal apoptosis, and a reduction in neurotransmitter levels. These aging phenomena disturb cortical electrical activity and its synchronization with connected regions. Previous electroencephalography (EEG) studies reported an age-related decrease in electrical activity in the alpha frequency band at occipital, parietal, and temporal areas as well as a decrease in occipital delta activity. However, there is an ongoing debate about whether there is an increase or decrease of the activity in other frequency bands with aging due to inconsistent study findings. In this study, we aimed to detect age-related changes of cortical electrical activities in all five frequency bands (delta, theta, alpha, beta, and gamma) in a large sample of healthy subjects for the first time. Using eLORETA (exact low-resolution brain electromagnetic tomography) analysis, we applied an eLORETA source estimation method to resting-state EEG data in 147 healthy subjects (median age 55, IQR 26.5–67.0) to obtain cortical electrical activity and assessed age-related changes in this activity using correlation analysis with multiple comparison correction. The combination of the eLORETA source estimation method and correlation analysis implemented in eLORETA software detected age-related changes in specific cortical regions for each frequency band: (1) delta and theta cortical electrical activities decreased at the occipital area with age, (2) alpha cortical electrical activity decreased at the occipitoparietotemporal areas with age, (3) beta cortical electrical activity increased at the insula, sensorimotor area, supplementary motor area, premotor area, and right temporal areas with age (most significant correlation at the right insula), (4) gamma cortical electrical activity increased at the frontoparietal and left temporal areas with age. These findings extend previous EEG study findings and provide valuable information related to mechanisms of healthy aging. Overall, our findings revealed that even healthy aging greatly affects cortical electrical activities in a region-specific way

    Quantum Monte Carlo Simulation of the Trellis Lattice Heisenberg Model for SrCu2_2O3_3 and CaV2_2O5_5

    Full text link
    We study the spin-1/2 trellis lattice Heisenberg model, a coupled spin ladder system, both by perturbation around the dimer limit and by quantum Monte Carlo simulations. We discuss the influence of the inter-ladder coupling on the spin gap and the dispersion, and present results for the temperature dependence of the uniform susceptibility. The latter was found to be parameterized well by a mean-field type scaling ansatz. Finally we discuss fits of experimental measurements on SrCu2_2O3_3 and CaV2_2O5_5 to our results.Comment: 7 pages, 8 figure

    Diffuse Neutron Scattering Study of a Disordered Complex Perovskite Pb(Zn1/3Nb2/3)O3 Crystal

    Full text link
    Diffuse scattering around the (110) reciprocal lattice point has been investigated by elastic neutron scattering in the paraelectric and the relaxor phases of the disordered complex perovskite crystal-Pb(Zn1/3Nb2/3)O3(PZN). The appearance of a diffuse intensity peak indicates the formation of polar nanoregions at temperature T*, approximately 40K above Tc=413K. The analysis of this diffuse scattering indicates that these regions are in the shape of ellipsoids, more extended in the direction than in the direction. The quantitative analysis provides an estimate of the correlation length, \xi, or size of the regions and shows that \xi ~1.2\xi , consistent with the primary or dominant displacement of Pb leading to the low temperature rhombohedral phase. Both the appearance of the polar regions at T*and the structural transition at Tc are marked by kinks in the \xi curve but not in the \xi one, also indicating that the primary changes take place in a direction at both temperatures.Comment: REVTeX file. 4 pages, 3 figures embedded, New version after referee cond-mat/010605

    Autonomous and reversible adhesion using elastomeric suction cups for in-vivo medical treatments

    Get PDF
    Remotely controllable and reversible adhesion is highly desirable for surgical operations: it can provide the possibility of non-invasive surgery, flexibility in fixing a patch and surgical manipulation via sticking. In our previous work, we developed a remotely controllable, ingestible, and deployable pill for use as a patch in the human stomach. In this study, we focus on magnetically facilitated reversible adhesion and develop a suction-based adhesive mechanism as a solution for non-invasive and autonomous adhesion of patches. We present the design, model, and fabrication of a magnet-embedded elastomeric suction cup. The suction cup can be localised, navigated, and activated or deactivated in an autonomous way; all realised magnetically with a pre-programmed fashion. The use of the adhesion mechanism is demonstrated for anchoring and carrying, for patching an internal organ surface and for an object removal, respectively

    Various series expansions for a Heisenberg antiferromagnet model for SrCu2_2(BO3_3)2_2

    Full text link
    We use a variety of series expansion methods at both zero and finite temperature to study an antiferromagnetic Heisenberg spin model proposed recently by Miyahara and Ueda for the quasi two-dimensional material SrCu2_2(BO3_3)2_2. We confirm that this model exhibits a first-order quantum phase transition at T=0 between a gapped dimer phase and a gapless N\'eel phase when the ratio x=J′/Jx=J'/J of nearest and next-nearest neighbour interactions is varied, and locate the transition at xc=0.691(6)x_c=0.691(6). Using longer series we are able to give more accurate estimates of the model parameters by fitting to the high temperature susceptibility data.Comment: RevTeX, 13 figure
    • …
    corecore