112 research outputs found

    Safe and efficient method for cryopreservation of human induced pluripotent stem cell-derived neural stem and progenitor cells by a programmed freezer with a magnetic field

    Get PDF
    AbstractStem cells represent a potential cellular resource in the development of regenerative medicine approaches to the treatment of pathologies in which specific cells are degenerated or damaged by genetic abnormality, disease, or injury. Securing sufficient supplies of cells suited to the demands of cell transplantation, however, remains challenging, and the establishment of safe and efficient cell banking procedures is an important goal. Cryopreservation allows the storage of stem cells for prolonged time periods while maintaining them in adequate condition for use in clinical settings. Conventional cryopreservation systems include slow-freezing and vitrification both have advantages and disadvantages in terms of cell viability and/or scalability. In the present study, we developed an advanced slow-freezing technique using a programmed freezer with a magnetic field called Cells Alive System (CAS) and examined its effectiveness on human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs). This system significantly increased cell viability after thawing and had less impact on cellular proliferation and differentiation. We further found that frozen-thawed hiPSC-NS/PCs were comparable with non-frozen ones at the transcriptome level. Given these findings, we suggest that the CAS is useful for hiPSC-NS/PCs banking for clinical uses involving neural disorders and may open new avenues for future regenerative medicine

    Timp-3 deficiency impairs cognitive function in mice

    Get PDF
    Extracellular matrix (ECM) degradation is performed primarily by matrix metalloproteinases (MMPs). MMPs have recently been shown to regulate synaptic activity in the hippocampus and to affect memory and learning. The tissue inhibitor of metalloproteinase (Timp) is an endogenous factor that controls MMP activity by binding to the catalytic site of MMPs. At present, four Timp isotypes have been reported (Timp-1 through Timp-4) with 35–50% amino-acid sequence homology. Timp-3 is a unique member of Timp proteins in that it is bound to the ECM. In this study, we used the passive avoidance test, active avoidance test, and water maze test to examine the cognitive function in Timp-3 knockout (KO) mice. Habituation was evaluated using the open-field test. The water maze test showed that Timp-3 KO mice exhibit deterioration in cognitive function compared with wild-type (WT) mice. The open-field test showed decreased habituation of Timp-3 KO mice. Immunostaining of brain slices revealed the expression of Timp-3 in the hippocampus. In situ zymography of the hippocampus showed increased gelatinolytic activity in Timp-3 KO mice compared with WT mice. These results present the first evidence of Timp-3 involvement in cognitive function and hippocampal MMP activity in mice. Moreover, our findings suggest a novel therapeutic target to be explored for improvement of cognitive function in humans

    Extensive Neuronal Differentiation of Human Neural Stem Cell Grafts in Adult Rat Spinal Cord

    Get PDF
    BACKGROUND: Effective treatments for degenerative and traumatic diseases of the nervous system are not currently available. The support or replacement of injured neurons with neural grafts, already an established approach in experimental therapeutics, has been recently invigorated with the addition of neural and embryonic stem-derived precursors as inexhaustible, self-propagating alternatives to fetal tissues. The adult spinal cord, i.e., the site of common devastating injuries and motor neuron disease, has been an especially challenging target for stem cell therapies. In most cases, neural stem cell (NSC) transplants have shown either poor differentiation or a preferential choice of glial lineages. METHODS AND FINDINGS: In the present investigation, we grafted NSCs from human fetal spinal cord grown in monolayer into the lumbar cord of normal or injured adult nude rats and observed large-scale differentiation of these cells into neurons that formed axons and synapses and established extensive contacts with host motor neurons. Spinal cord microenvironment appeared to influence fate choice, with centrally located cells taking on a predominant neuronal path, and cells located under the pia membrane persisting as NSCs or presenting with astrocytic phenotypes. Slightly fewer than one-tenth of grafted neurons differentiated into oligodendrocytes. The presence of lesions increased the frequency of astrocytic phenotypes in the white matter. CONCLUSIONS: NSC grafts can show substantial neuronal differentiation in the normal and injured adult spinal cord with good potential of integration into host neural circuits. In view of recent similar findings from other laboratories, the extent of neuronal differentiation observed here disputes the notion of a spinal cord that is constitutively unfavorable to neuronal repair. Restoration of spinal cord circuitry in traumatic and degenerative diseases may be more realistic than previously thought, although major challenges remain, especially with respect to the establishment of neuromuscular connections

    RNA-Binding Protein Musashi1 Modulates Glioma Cell Growth through the Post-Transcriptional Regulation of Notch and PI3 Kinase/Akt Signaling Pathways

    Get PDF
    Musashi1 (MSI1) is an RNA-binding protein that plays critical roles in nervous-system development and stem-cell self-renewal. Here, we examined its role in the progression of glioma. Short hairpin RNA (shRNA)-based MSI1-knock down (KD) in glioblastoma and medulloblastoma cells resulted in a significantly lower number of self renewing colony on day 30 (a 65% reduction), compared with non-silencing shRNA-treated control cells, indicative of an inhibitory effect of MSI1-KD on tumor cell growth and survival. Immunocytochemical staining of the MSI1-KD glioblastoma cells indicated that they ectopically expressed metaphase markers. In addition, a 2.2-fold increase in the number of MSI1-KD cells in the G2/M phase was observed. Thus, MSI1-KD caused the prolongation of mitosis and reduced the cell survival, although the expression of activated Caspase-3 was unaltered. We further showed that MSI1-KD glioblastoma cells xenografted into the brains of NOD/SCID mice formed tumors that were 96.6% smaller, as measured by a bioluminescence imaging system (BLI), than non-KD cells, and the host survival was longer (49.3±6.1 days vs. 33.6±3.6 days; P<0.01). These findings and other cell biological analyses suggested that the reduction of MSI1 in glioma cells prolonged the cell cycle by inducing the accumulation of Cyclin B1. Furthermore, MSI1-KD reduced the activities of the Notch and PI3 kinase-Akt signaling pathways, through the up-regulation of Numb and PTEN, respectively. Exposure of glioma cells to chemical inhibitors of these pathways reduced the number of spheres and living cells, as did MSI1-KD. These results suggest that MSI1 increases the growth and/or survival of certain types of glioma cells by promoting the activation of both Notch and PI3 kinase/Akt signaling

    Mogi M. Regulation of angiotensin II receptors beyond the classical pathway. Clin Sci (Lond

    No full text
    A B S T R A C T The RAS (renin-angiotensin system) plays a role not only in the cardiovascular system, including blood pressure regulation, but also in the central nervous system. AngII (angiotensin II) binds two major receptors: the AT 1 receptor (AngII type 1 receptor) and AT 2 receptor (AngII type 2 receptor). It has been recognized that AT 2 receptor activation not only opposes AT 1 receptor actions, but also has unique effects beyond inhibitory cross-talk with AT 1 receptor signalling. Novel pathways beyond the classical actions of RAS, the ACE (angiotensin-converting enzyme)/AngII/AT 1 receptor axis, have been highlighted: the ACE2/Ang-(1-7) [angiotensin-(1-7)]/Mas receptor axis as a new opposing axis against the ACE/AngII/AT 1 receptor axis, novel AngII-receptor-interacting proteins and various AngII-receptor-activation mechanisms including dimer formation. ATRAP (AT 1 -receptor-associated protein) and ATIP (AT 2 -receptor-interacting protein) are well-characterized AngII-receptor-associated proteins. These proteins could regulate the functions of AngII receptors and thereby influence various pathophysiological states. Moreover, the possible cross-talk between PPAR (peroxisome-proliferator-activated receptor)-γ and AngII receptor subtypes is an intriguing issue to be addressed in order to understand the roles of RAS in the metabolic syndrome, and interestingly some ARBs (AT 1 -receptor blockers) have been reported to have an AT 1 -receptor-blocking action with a partial PPAR-γ agonistic effect. These emerging concepts concerning the regulation of AngII receptors are discussed in the present review

    Roles of Brain Angiotensin II in Cognitive Function and Dementia

    Get PDF
    The brain renin-angiotensin system (RAS) has been highlighted as having a pathological role in stroke, dementia, and neurodegenerative disease. Particularly, in dementia, epidemiological studies indicate a preventive effect of RAS blockade on cognitive impairment in Alzheimer disease (AD). Moreover, basic experiments suggest a role of brain angiotensin II in neural injury, neuroinflammation, and cognitive function and that RAS blockade attenuates cognitive impairment in rodent dementia models of AD. Therefore, RAS regulation is expected to have therapeutic potential for AD. Here, we discuss the role of angiotensin II in cognitive impairment and AD. Angiotensin II binds to the type 2 receptor (AT2) and works mainly by binding with the type 1 receptor (AT1). AT2 receptor signaling plays a role in protection against multiple-organ damage. A direct AT2 receptor agonist is now available and is expected to reduce inflammation and oxidative stress and enhance cell differentiation. We and other groups reported that AT2 receptor activation enhances neuronal differentiation and neurite outgrowth in the brain. Here, we also review the effect of the AT2 receptor on cognitive function. RAS modulation may be a new therapeutic option for dementia including AD in the future

    Difference between the Effects of Peripheral Sensory Nerve Electrical Stimulation on the Excitability of the Primary Motor Cortex: Examination of the Combinations of Stimulus Frequency and Duration

    No full text
    Peripheral sensory nerve electrical stimulation (PES) excites the primary motor cortex and is expected to improve motor dysfunction post-stroke. However, previous studies have reported a variety of stimulus frequencies and stimulus duration settings, and the effects of these different combinations on primary motor cortex excitability are not clear. We aimed to clarify the effects of different combinations of stimulus frequency and stimulus duration of PES on the excitation of primary motor cortex. Twenty-one healthy individuals (aged &gt; 18 years, right-handed, and without a history of neurological or orthopedic disorders) were included. Each participant experienced three different stimulation frequencies (1, 10 and 50 Hz) and durations (20, 40 and 60 min). Motor-evoked potentials (MEPs) were recorded pre- and post-PES. The outcome measure was the change in primary motor cortex excitability using the MEP ratio. We used a D-optimal design of experiments and response surface analysis to define the optimal combination within nine different settings inducing more satisfying responses. The combination of stimulation frequency and stimulation time that maximized the desirability value was 10 Hz and 40 min, respectively. The results of this study may provide fundamental data for more minimally invasive and effective implementation of PES in patients with stroke
    corecore