1,622 research outputs found
Photoacoustic wave propagating from normal into superconductive phases in Pb single crystals
Photoacoustic (PA) wave has been examined in a superconductor of the first
kind, Pb single crystal. The PA wave is induced by optical excitation of
electronic state and propagates from normal into superconductive phases below
T. It is clearly shown by wavelet analysis that the measured PA wave
includes two different components. The high-frequency component is
MHz-ultrasonic and the relative low-frequency one is induced by thermal wave.
The latter is observed in a similar manner irrespective of T. On the
other hand, the MHz-frequency component is obviously enhanced below T. The behavior is reproduced by the change of attenuation of longitudinal
ultrasonic wave and is consistent with BCS theory.Comment: 5 pages, 5 figures (fig.3 is colored), RevTeX4; the text is modifie
A high temperature apparatus for measurement of the Seebeck coefficient
A high temperature Seebeck coefficient measurement apparatus with various features to minimize typical sources of error is designed and built. Common sources of temperature and voltage measurement error are described and principles to overcome these are proposed. With these guiding principles, a high temperature Seebeck measurement apparatus with a uniaxial 4-point contact geometry is designed to operate from room temperature to over 1200 K. This instrument design is simple to operate, and suitable for bulk samples with a broad range of physical types and shapes
Trends in Competition and Profitability in the Banking Industry: A Basic Framework
This paper brings to the forefront the assumptions that we make when focusing on a particular type of explanation for bank profitability. We evaluate a broad field of research by introducing a general framework for a profit maximizing bank and demonstrate how different types of models can be fitted into this framework. Next, we present an overview of the current major trends in European banking and relate them to each model’s assumptions, thereby shedding light on the relevance, timeliness and shelf life of the different models. This way, we arrive at a set of recommendations for a future research agenda. We advocate a more prominent role for output prices, and suggest a modification of the intermediation approach. We also suggest ways to more clearly distinguish between market power and efficiency, and explain why we need time-dependent models. Finally, we propose the application of existing models to different size classes and sub-markets. Throughout we emphasize the benefits from applying several, complementary models to overcome the identification problems that we observe in individual models.
Reciprocal transmittances and reflectances: An elementary proof
We present an elementary proof concerning reciprocal transmittances and
reflectances. The proof is direct, simple, and valid for the diverse objects
that can be absorptive and induce diffraction and scattering, as long as the
objects respond linearly and locally to electromagnetic waves. The proof
enables students who understand the basics of classical electromagnetics to
grasp the physical basis of reciprocal optical responses. In addition, we show
an example to demonstrate reciprocal response numerically and experimentally.Comment: 6 pages, 5 figures. RevTEX4. Improved wording. Physics Educatio
Nanoscale Weibull Statistics
In this paper a modification of the classical Weibull Statistics is developed
for nanoscale applications. It is called Nanoscale Weibull Statistics. A
comparison between Nanoscale and classical Weibull Statistics applied to
experimental results on fracture strength of carbon nanotubes clearly shows the
effectiveness of the proposed modification. A Weibull's modulus around 3 is,
for the first time, deduced for nanotubes. The approach can treat (also) a
small number of structural defects, as required for nearly defect free
structures (e.g., nanotubes) as well as a quantized crack propagation (e.g., as
a consequence of the discrete nature of matter), allowing to remove the
paradoxes caused by the presence of stress-intensifications
Beta-glucan reflects liver injury after preservation and transplantation in dogs.
Graft failure and extrahepatic organ complications, which frequently develop after transplantation, may be related to inflammatory mediators stimulated by endotoxin (ET). The role of endotoxemia after liver transplantation is controversial and may depend upon differences in the ET assay method used in the various contradicting studies. While the standard Limulus amebocyte lysate (LAL) is reactive for ET and beta-glucan, a novel turbidimetric assay method enables separate determinations of ET and beta-glucan. Beagle dogs undergoing orthotopic liver transplantation were divided into two groups. In Group I (n = 6) the grafts were transplanted immediately and in Group II (n = 6) grafts were preserved for 48 h in University of Wisconsin (UW) solution. Animals received cyclosporine immunosuppression and were followed for 14 days. Daily measurements of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) were performed. Samples for ET and beta-glucan measurement were collected serially and processed using the turbidimetric assay method. While no graft failure was seen in Group I, three of six Group II animals died from graft failure within 1 day after transplantation. Preservation and reperfusion injury was much more severe in the Group II grafts than in Group I grafts. While endotoxemia could not be detected, postoperative beta-glucan levels (undetectable pretransplant) were seen in both groups. Beta-glucan levels were much higher in Group II grafts than in Group I grafts, and correlated with the severity of liver damage. In conclusion, this study shows that beta-glucan, instead of ET, appears during the early posttransplant period. We believe that posttransplant elevation of beta-glucan is related to liver damage, especially endothelial damage by preservation and reperfusion
The growth of ZnO crystals from the melt
The peculiar properties of zinc oxide (ZnO) make this material interesting
for very different applications like light emitting diodes, lasers, and
piezoelectric transducers. Most of these applications are based on epitaxial
ZnO layers grown on suitable substrates, preferably bulk ZnO. Unfortunately the
thermochemical properties of ZnO make the growth of single crystals difficult:
the triple point 1975 deg C., 1.06 bar and the high oxygen fugacity at the
melting point p_O2 = 0.35 bar lead to the prevailing opinion that ZnO crystals
for technical applications can only be grown either by a hydrothermal method or
from "cold crucibles" of solid ZnO. Both methods are known to have significant
drawbacks. Our thermodynamic calculations and crystal growth experiments show,
that in contrast to widely accepted assumptions, ZnO can be molten in metallic
crucibles, if an atmosphere with "self adjusting" p_O2 is used. This new result
is believed to offer new perspectives for ZnO crystal growth by established
standard techniques like the Bridgman method.Comment: 6 pages, 6 figures, accepted for J. Crystal Growt
- …