7,393 research outputs found
Hypernova Nucleosynthesis and Galactic Chemical Evolution
We study nucleosynthesis in 'hypernovae', i.e., supernovae with very large
explosion energies ( \gsim 10^{52} ergs) for both spherical and aspherical
explosions. The hypernova yields compared to those of ordinary core-collapse
supernovae show the following characteristics: 1) Complete Si-burning takes
place in more extended region, so that the mass ratio between the complete and
incomplete Si burning regions is generally larger in hypernovae than normal
supernovae. As a result, higher energy explosions tend to produce larger [(Zn,
Co)/Fe], small [(Mn, Cr)/Fe], and larger [Fe/O], which could explain the trend
observed in very metal-poor stars. 2) Si-burning takes place in lower density
regions, so that the effects of -rich freezeout is enhanced. Thus
Ca, Ti, and Zn are produced more abundantly than in normal
supernovae. The large [(Ti, Zn)/Fe] ratios observed in very metal poor stars
strongly suggest a significant contribution of hypernovae. 3) Oxygen burning
also takes place in more extended regions for the larger explosion energy. Then
a larger amount of Si, S, Ar, and Ca ("Si") are synthesized, which makes the
"Si"/O ratio larger. The abundance pattern of the starburst galaxy M82 may be
attributed to hypernova explosions. Asphericity in the explosions strengthens
the nucleosynthesis properties of hypernovae except for "Si"/O. We thus suggest
that hypernovae make important contribution to the early Galactic (and cosmic)
chemical evolution.Comment: To be published in "The Influence of Binaries on Stellar Population
Studies", ed. D. Vanbeveren (Kluwer), 200
First-principles accurate total-energy surfaces for polar structural distortions of BaTiO3, PbTiO3, and SrTiO3: consequences to structural transition temperatures
Specific forms of the exchange correlation energy functionals in
first-principles density functional theory-based calculations, such as the
local density approximation (LDA) and generalized-gradient approximations
(GGA), give rise to structural lattice parameters with typical errors of -2%
and 2%. Due to a strong coupling between structure and polarization, the order
parameter of ferroelectric transitions, they result in large errors in
estimation of temperature dependent ferroelectric structural transition
properties. Here, we employ a recently developed GGA functional of Wu and Cohen
[Phys. Rev. B 73, 235116 (2006)] and determine total-energy surfaces for
zone-center distortions of BaTiO3, PbTiO3, and SrTiO3, and compare them with
the ones obtained with calculations based on standard LDA and GGA. Confirming
that the Wu and Cohen functional allows better estimation of structural
properties at 0 K, we determine a new set of parameters defining the effective
Hamiltonian for ferroelectric transition in BaTiO3. Using the new set of
parameters, we perform molecular-dynamics (MD) simulations under effective
pressures p=0.0 GPa, p=-2.0 GPa, and p=-0.005T GPa. The simulations under
p=-0.005T GPa, which is for simulating thermal expansion, show a clear
improvement in the cubic to tetragonal transition temperature and c/a parameter
of its ferroelectric tetragonal phase, while the description of transitions at
lower temperatures to orthorhombic and rhombohedral phases is marginally
improved. Our findings augur well for use of Wu-Cohen functional in studies of
ferroelectrics at nano-scale, particularly in the form of epitaxial films where
the properties depend crucially on the lattice mismatch.Comment: 10 pages, 7 figures, 3 tables, resubmitted to PR
Higgs Mass and Muon Anomalous Magnetic Moment in Supersymmetric Models with Vector-Like Matters
We study the muon anomalous magnetic moment (muon g-2) and the Higgs boson
mass in a simple extension of the minimal supersymmetric (SUSY) Standard Model
with extra vector-like matters, in the frameworks of gauge mediated SUSY
breaking (GMSB) models and gravity mediation (mSUGRA) models. It is shown that
the deviation of the muon g-2 and a relatively heavy Higgs boson can be
simultaneously explained in large tan-beta region. (i) In GMSB models, the
Higgs mass can be more than 135 GeV (130 GeV) in the region where muon g-2 is
consistent with the experimental value at the 2 sigma (1 sigma) level, while
maintaining the perturbative coupling unification. (ii) In the case of mSUGRA
models with universal soft masses, the Higgs mass can be as large as about 130
GeV when muon g-2 is consistent with the experimental value at the 2 sigma
level. In both cases, the Higgs mass can be above 140 GeV if the g-2 constraint
is not imposed.Comment: 26 pages; 7 figures; corrected typos; minor change
Recommended from our members
Mindfulness Meditation Activates Altruism.
Clinical evidence suggests that mindfulness meditation reduces anxiety, depression, and stress, and improves emotion regulation due to modulation of activity in neural substrates linked to the regulation of emotions and social preferences. However, less was known about whether mindfulness meditation might alter pro-social behavior. Here we examined whether mindfulness meditation activates human altruism, a component of social cooperation. Using a simple donation game, which is a real-world version of the Dictator's Game, we randomly assigned 326 subjects to a mindfulness meditation online session or control and measured their willingness to donate a portion of their payment for participation as a charitable donation. Subjects who underwent the meditation treatment donated at a 2.61 times higher rate than the control (p = 0.005), after controlling for socio-demographics. We also found a larger treatment effect of meditation among those who did not go to college (p < 0.001) and those who were under 25 years of age (p < 0.001), with both subject groups contributing virtually nothing in the control condition. Our results imply high context modularity of human altruism and the development of intervention approaches including mindfulness meditation to increase social cooperation, especially among subjects with low baseline willingness to contribute
The Peculiar Type Ic Supernova 1997ef: Another Hypernova
SN 1997ef has been recognized as a peculiar supernova from its light curve
and spectral properties. The object was classified as a Type Ic supernova (SN
Ic) because its spectra are dominated by broad absorption lines of oxygen and
iron, lacking any clear signs of hydrogen or helium line features. The light
curve is very different from that of previously known SNe Ic, showing a very
broad peak and a slow tail. The strikingly broad line features in the spectra
of SN 1997ef, which were also seen in the hypernova SN 1998bw, suggest the
interesting possibility that SN 1997ef may also be a hypernova. The light curve
and spectra of SN 1997ef were modeled first with a standard SN~Ic model
assuming an ordinary kinetic energy of explosion erg. The
explosion of a CO star of mass gives a
reasonably good fit to the light curve but clearly fails to reproduce the broad
spectral features. Then, models with larger masses and energies were explored.
Both the light curve and the spectra of SN 1997ef are much better reproduced by
a C+O star model with 8 \e{51} erg and .
Therefore, we conclude that SN 1997ef is very likely a hypernova on the basis
of its kinetic energy of explosion. Finally, implications for the deviation
from spherical symmetry are discussed in an effort to improve the light curve
and spectral fits.Comment: "To appear in the Astrophysical Journal, Vol.534 (2000)
Anisotropic magnetic field responses of ferroelectric polarization in a trigonal multiferroic CuFe1-xAlxO2 (x=0.015)
We have investigated magnetic field dependences of a ferroelectric
incommensurate-helimagnetic order in a trigonal magneto-electric (ME)
multiferroic CuFe1-xAlxO2 with x=0.015, which exhibits the ferroelectric phase
as a ground state, by means of neutron diffraction, magnetization and
dielectric polarization measurements under magnetic fields applied along
various directions. From the present results, we have established the H-T
magnetic phase diagrams for the three principal directions of magnetic fields;
(i) parallel to the c axis, (ii) parallel to the helical axis, and (iii)
perpendicular to the c and the helical axes. While the previous dielectric
polarization (P) measurements on CuFe1-xGaxO2 with x=0.035 have demonstrated
that the magnetic field dependence of the `magnetic domain structure' results
in distinct magnetic field responses of P [S. Seki et al., Phys. Rev. Lett.,
103 237601 (2009)], the present study have revealed that the anisotropic
magnetic field dependence of the ferroelectric helimagnetic order `in each
magnetic domain' can be also a source of a variety of magnetic field responses
of P in CuFe1-xAxO2 systems (A=Al, Ga).Comment: 11 pages, 9 figures, accepted for publication in Phys. Rev.
- …
