5,846 research outputs found

    A Landslide Warning System For a Soil Slope on Oahu.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2018

    Hypernova Nucleosynthesis and Galactic Chemical Evolution

    Get PDF
    We study nucleosynthesis in 'hypernovae', i.e., supernovae with very large explosion energies ( \gsim 10^{52} ergs) for both spherical and aspherical explosions. The hypernova yields compared to those of ordinary core-collapse supernovae show the following characteristics: 1) Complete Si-burning takes place in more extended region, so that the mass ratio between the complete and incomplete Si burning regions is generally larger in hypernovae than normal supernovae. As a result, higher energy explosions tend to produce larger [(Zn, Co)/Fe], small [(Mn, Cr)/Fe], and larger [Fe/O], which could explain the trend observed in very metal-poor stars. 2) Si-burning takes place in lower density regions, so that the effects of α\alpha-rich freezeout is enhanced. Thus 44^{44}Ca, 48^{48}Ti, and 64^{64}Zn are produced more abundantly than in normal supernovae. The large [(Ti, Zn)/Fe] ratios observed in very metal poor stars strongly suggest a significant contribution of hypernovae. 3) Oxygen burning also takes place in more extended regions for the larger explosion energy. Then a larger amount of Si, S, Ar, and Ca ("Si") are synthesized, which makes the "Si"/O ratio larger. The abundance pattern of the starburst galaxy M82 may be attributed to hypernova explosions. Asphericity in the explosions strengthens the nucleosynthesis properties of hypernovae except for "Si"/O. We thus suggest that hypernovae make important contribution to the early Galactic (and cosmic) chemical evolution.Comment: To be published in "The Influence of Binaries on Stellar Population Studies", ed. D. Vanbeveren (Kluwer), 200

    First-principles accurate total-energy surfaces for polar structural distortions of BaTiO3, PbTiO3, and SrTiO3: consequences to structural transition temperatures

    Full text link
    Specific forms of the exchange correlation energy functionals in first-principles density functional theory-based calculations, such as the local density approximation (LDA) and generalized-gradient approximations (GGA), give rise to structural lattice parameters with typical errors of -2% and 2%. Due to a strong coupling between structure and polarization, the order parameter of ferroelectric transitions, they result in large errors in estimation of temperature dependent ferroelectric structural transition properties. Here, we employ a recently developed GGA functional of Wu and Cohen [Phys. Rev. B 73, 235116 (2006)] and determine total-energy surfaces for zone-center distortions of BaTiO3, PbTiO3, and SrTiO3, and compare them with the ones obtained with calculations based on standard LDA and GGA. Confirming that the Wu and Cohen functional allows better estimation of structural properties at 0 K, we determine a new set of parameters defining the effective Hamiltonian for ferroelectric transition in BaTiO3. Using the new set of parameters, we perform molecular-dynamics (MD) simulations under effective pressures p=0.0 GPa, p=-2.0 GPa, and p=-0.005T GPa. The simulations under p=-0.005T GPa, which is for simulating thermal expansion, show a clear improvement in the cubic to tetragonal transition temperature and c/a parameter of its ferroelectric tetragonal phase, while the description of transitions at lower temperatures to orthorhombic and rhombohedral phases is marginally improved. Our findings augur well for use of Wu-Cohen functional in studies of ferroelectrics at nano-scale, particularly in the form of epitaxial films where the properties depend crucially on the lattice mismatch.Comment: 10 pages, 7 figures, 3 tables, resubmitted to PR
    corecore