2,608 research outputs found

    Phase Transition in a One-Dimensional Extended Peierls-Hubbard Model with a Pulse of Oscillating Electric Field: III. Interference Caused by a Double Pulse

    Full text link
    In order to study consequences of the differences between the ionic-to-neutral and neutral-to-ionic transitions in the one-dimensional extended Peierls-Hubbard model with alternating potentials for the TTF-CA complex, we introduce a double pulse of oscillating electric field in the time-dependent Schr\"odinger equation and vary the interval between the two pulses as well as their strengths. When the dimerized ionic phase is photoexcited, the interference effect is clearly observed owing to the coherence of charge density and lattice displacements. Namely, the two pulses constructively interfere with each other if the interval is a multiple of the period of the optical lattice vibration, while they destructively interfere if the interval is a half-odd integer times the period, in the processes toward the neutral phase. The interference is strong especially when the pulse is strong and short because the coherence is also strong. Meanwhile, when the neutral phase is photoexcited, the interference effect is almost invisible or weakly observed when the pulse is weak. The photoinduced lattice oscillations are incoherent due to random phases. The strength of the interference caused by a double pulse is a key quantity to distinguish the two transitions and to evaluate the coherence of charge density and lattice displacements.Comment: 16 pages, 8 figure

    Phase Transition in a One-Dimensional Extended Peierls-Hubbard Model with a Pulse of Oscillating Electric Field: I. Threshold Behavior in Ionic-to-Neutral Transition

    Full text link
    Photoinduced dynamics of charge density and lattice displacements is calculated by solving the time-dependent Schr\"odinger equation for a one-dimensional extended Peierls-Hubbard model with alternating potentials for the mixed-stack organic charge-transfer complex, TTF-CA. A pulse of oscillating electric field is incorporated into the Peierls phase of the transfer integral. The frequency, the amplitude, and the duration of the pulse are varied to study the nonlinear and cooperative character of the photoinduced transition. When the dimerized ionic phase is photoexcited, the threshold behavior is clearly observed by plotting the final ionicity as a function of the increment of the total energy. Above the threshold photoexcitation, the electronic state reaches the neutral one with equidistant molecules after the electric field is turned off. The transition is initiated by nucleation of a metastable neutral domain, for which an electric field with frequency below the linear absorption peak is more effective than that at the peak. When the pulse is strong and short, the charge transfer takes place on the same time scale with the disappearance of dimerization. As the pulse becomes weak and long, the dimerization-induced polarization is disordered to restore the inversion symmetry on average before the charge transfer takes place to bring the system neutral. Thus, a paraelectric ionic phase is transiently realized by a weak electric field. It is shown that infrared light also induces the ionic-to-neutral transition, which is characterized by the threshold behavior.Comment: 24 pages, 11 figure

    Geometric Approach to Lyapunov Analysis in Hamiltonian Dynamics

    Get PDF
    As is widely recognized in Lyapunov analysis, linearized Hamilton's equations of motion have two marginal directions for which the Lyapunov exponents vanish. Those directions are the tangent one to a Hamiltonian flow and the gradient one of the Hamiltonian function. To separate out these two directions and to apply Lyapunov analysis effectively in directions for which Lyapunov exponents are not trivial, a geometric method is proposed for natural Hamiltonian systems, in particular. In this geometric method, Hamiltonian flows of a natural Hamiltonian system are regarded as geodesic flows on the cotangent bundle of a Riemannian manifold with a suitable metric. Stability/instability of the geodesic flows is then analyzed by linearized equations of motion which are related to the Jacobi equations on the Riemannian manifold. On some geometric setting on the cotangent bundle, it is shown that along a geodesic flow in question, there exist Lyapunov vectors such that two of them are in the two marginal directions and the others orthogonal to the marginal directions. It is also pointed out that Lyapunov vectors with such properties can not be obtained in general by the usual method which uses linearized Hamilton's equations of motion. Furthermore, it is observed from numerical calculation for a model system that Lyapunov exponents calculated in both methods, geometric and usual, coincide with each other, independently of the choice of the methods.Comment: 22 pages, 14 figures, REVTeX

    Charge-Transfer Excitations in One-Dimensional Dimerized Mott Insulators

    Full text link
    We investigate the optical properties of one-dimensional (1D) dimerized Mott insulators using the 1D dimerized extended Hubbard model. Numerical calculations and a perturbative analysis from the decoupled-dimer limit clarify that there are three relevant classes of charge-transfer (CT) states generated by photoexcitation: interdimer CT unbound states, interdimer CT exciton states, and intradimer CT exciton states. This classification is applied to understanding the optical properties of an organic molecular material, 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA), which is known for its photoinduced transition from the dimerized spin-singlet phase to the regular paramagnetic phase. We conclude that the lowest photoexcited state of TTTA is the interdimer CT exciton state and the second lowest state is the intradimer CT exciton state.Comment: 6 pages, 6 figures, to be published in J. Phys. Soc. Jp

    Effects of Lattice and Molecular Phonons on Photoinduced Neutral-to-Ionic Transition Dynamics in Tetrathiafulvalene-pp-Chloranil

    Full text link
    For electronic states and photoinduced charge dynamics near the neutral-ionic transition in the mixed-stack charge-transfer complex tetrathiafulvalene-pp-chloranil (TTF-CA), we review the effects of Peierls coupling to lattice phonons modulating transfer integrals and Holstein couplings to molecular vibrations modulating site energies. The former stabilizes the ionic phase and reduces discontinuities in the phase transition, while the latter stabilizes the neutral phase and enhances the discontinuities. To reproduce the experimentally observed ionicity, optical conductivity and photoinduced charge dynamics, both couplings are quantitatively important. In particular, strong Holstein couplings to form the highly-stabilized neutral phase are necessary for the ionic phase to be a Mott insulator with large ionicity. A comparison with the observed photoinduced charge dynamics indicates the presence of strings of lattice dimerization in the neutral phase above the transition temperature.Comment: 9 pages, 7 figures, accepted for publication in J. Phys. Soc. Jp

    Generalized Dynamics of Two Distict BPS Monopoles

    Full text link
    Classical and quantum dynamics of two distinct BPS monopoles in the case of non-aligned Higgs fields are studied on the basis of the recently determined low energy effective theory. Despite the presence of a specific potential together with a kinetic term provided by the metric of a Taub-NUT manifold, an O(4) or O(3,1) symmetry of the system allows for a group theoretical derivation of the bound-state spectrum and the scattering cross section.Comment: 10 pages, latex, no figur

    Generalized Taub-NUT metrics and Killing-Yano tensors

    Get PDF
    A necessary condition that a St\"ackel-Killing tensor of valence 2 be the contracted product of a Killing-Yano tensor of valence 2 with itself is re-derived for a Riemannian manifold. This condition is applied to the generalized Euclidean Taub-NUT metrics which admit a Kepler type symmetry. It is shown that in general the St\"ackel-Killing tensors involved in the Runge-Lenz vector cannot be expressed as a product of Killing-Yano tensors. The only exception is the original Taub-NUT metric.Comment: 14 pages, LaTeX. Final version to appear in J.Phys.A:Math.Ge
    • 

    corecore