276 research outputs found

    Numerical simulation of 3-D flow around sounding rocket in the lower thermosphere

    Get PDF
    International audienceNumerical simulations using the Direct Simulation Monte Carlo (DSMC) method are known to be useful for analyses of aerodynamic effects on in-situ rocket measurements in the lower thermosphere, but the DSMC analysis of a spin modulation caused by an asymmetric flow around the rocket spin axis has been restricted to the two-dimensional and axially symmetric simulations in actual sounding rocket experiments. This study provides a quantitative analysis of the spin modulation using a three-dimensional (3-D) simulation of the asymmetric flow with the DSMC method. Clear spin modulations in the lower thermospheric N2 density measurement by a rocket-borne instrument are simulated using the rocket attitude and velocity, the simplified payload structure, and the approximated atmospheric conditions. Comparison between the observed and simulated spin modulations show a very good agreement within 5% at around 100km. The results of the simulation are used to correct the spin modulations and derive the absolute densities in the background atmosphere

    Author Correction: Changes in Distribution of Dry Eye Disease by the New 2016 Diagnostic Criteria from the Asia Dry Eye Society.

    Get PDF
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper

    Electric field measurements of DC and long wavelength structures associated with sporadic-<i>E</i> layers and QP radar echoes

    Get PDF
    Electric field and plasma density data gathered on a sounding rocket launched from Uchinoura Space Center, Japan, reveal a complex electrodynamics associated with sporadic-<i>E</i> layers and simultaneous observations of quasi-periodic radar echoes. The electrodynamics are characterized by spatial and temporal variations that differed considerably between the rocket's upleg and downleg traversals of the lower ionosphere. Within the main sporadic-<i>E</i> layer (95–110 km) on the upleg, the electric fields were variable, with amplitudes of 2–4 mV/m that changed considerably within altitude intervals of 1–3 km. The identification of polarization electric fields coinciding with plasma density enhancements and/or depletions is not readily apparent. Within this region on the downleg, however, the direction of the electric field revealed a marked change that coincided precisely with the peak of a single, narrow sporadic-<i>E</i> plasma density layer near 102.5 km. This shear was presumably associated with the neutral wind shear responsible for the layer formation. The electric field data above the sporadic-<i>E</i> layer on the upleg, from 110 km to the rocket apogee of 152 km, revealed a continuous train of distinct, large scale, quasi-periodic structures with wavelengths of 10–15 km and wavevectors oriented between the NE-SW quadrants. The electric field structures had typical amplitudes of 3–5 mV/m with one excursion to 9 mV/m, and in a very general sense, were associated with perturbations in the plasma density. The electric field waveforms showed evidence for steepening and/or convergence effects and presumably had mapped upwards along the magnetic field from the sporadic-<i>E</i> region below. Candidate mechanisms to explain the origin of these structures include the Kelvin-Helmholtz instability and the <i>E<sub>s</sub></i>-layer instability. In both cases, the same shear that formed the sporadic-<i>E</i> layer would provide the energy to generate the km-scale structures. Other possibilities include gravity waves or a combination of these processes. The data suggest that these structures were associated with the lower altitude density striations that were the seat of the QP radar echoes observed simultaneously. They also appear to have been associated with the mechanism responsible for a well-defined pattern of "whorls" in the neutral wind data that were revealed in a chemical trail released by a second sounding rocket launched 15min later. Short scale (&lt;100 m) electric field irregularities were also observed and were strongest in the sporadic-<i>E</i> region below 110km. The irregularities were organized into 2–3 layers on the upleg, where the plasma density also displayed multiple layers, yet were confined to a single layer on the downleg where the plasma density showed a single, well-defined sporadic-<i>E</i> peak. The linear gradient drift instability involving the DC electric field and the vertical plasma gradient is shown to be incapable of driving the observed waves on the upleg, but may have contributed to the growth of short scale waves on the topside of the narrow unstable density gradient observed on the downleg. The data suggest that other sources of free energy may have been important factors for the growth of the short scale irregularities.<p> <b>Keywords.</b> Ionosphere (Mid-latitude ionosphere; Electric fields and currents; Ionospheric irregularities

    Genetic diversity and population structure of Plasmodium falciparum in the Philippines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the Philippines, malaria morbidity and mortality have decreased since the 1990s by effective malaria control. Several epidemiological surveys have been performed in the country, but the characteristics of the <it>Plasmodium falciparum </it>populations are not yet fully understood. In this study, the genetic structure of <it>P. falciparum </it>populations in the Philippines was examined.</p> <p>Methods</p> <p>Population genetic analyses based on polymorphisms of 10 microsatellite loci of the parasite were conducted on 92 isolates from three provinces (Kalinga, Palawan, and Davao del Norte) with different malaria endemicity.</p> <p>Results</p> <p>The levels of genetic diversity and the effective population sizes of <it>P. falciparum </it>in the Philippines were similar to those reported in the mainland of Southeast Asia or South America. In the low malaria transmission area (Kalinga), there was a low level of genetic diversity and a strong linkage disequilibrium (LD) when the single-clone haplotype (SCH) was used in the multilocus LD analysis, while in the high malaria transmission areas (Palawan and Davao del Norte), there was a high level of genetic diversity and a weak LD when SCH was used in the multilocus LD analysis. On the other hand, when the unique haplotypes were used in the multilocus LD analysis, no significant LD was observed in the Kalinga and the Palawan populations. The Kalinga and the Palawan populations were, therefore, estimated to have an epidemic population structure. The three populations were moderately differentiated from each other.</p> <p>Conclusion</p> <p>In each area, the level of genetic diversity correlates with the local malaria endemicity. These findings confirm that population genetic analyses using microsatellite loci are a useful tool for evaluating malaria endemicity.</p

    Evolution of cooperation driven by zealots

    Full text link
    Recent experimental results with humans involved in social dilemma games suggest that cooperation may be a contagious phenomenon and that the selection pressure operating on evolutionary dynamics (i.e., mimicry) is relatively weak. I propose an evolutionary dynamics model that links these experimental findings and evolution of cooperation. By assuming a small fraction of (imperfect) zealous cooperators, I show that a large fraction of cooperation emerges in evolutionary dynamics of social dilemma games. Even if defection is more lucrative than cooperation for most individuals, they often mimic cooperation of fellows unless the selection pressure is very strong. Then, zealous cooperators can transform the population to be even fully cooperative under standard evolutionary dynamics.Comment: 5 figure
    corecore