14 research outputs found

    Cyclosporin A Associated Helicase-Like Protein Facilitates the Association of Hepatitis C Virus RNA Polymerase with Its Cellular Cyclophilin B

    Get PDF
    BACKGROUND: Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. PRINCIPAL FINDINGS: Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. CONCLUSIONS: We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology

    Analysis of the Basidiomycete Coprinopsis cinerea Reveals Conservation of the Core Meiotic Expression Program over Half a Billion Years of Evolution

    Get PDF
    Coprinopsis cinerea (also known as Coprinus cinereus) is a multicellular basidiomycete mushroom particularly suited to the study of meiosis due to its synchronous meiotic development and prolonged prophase. We examined the 15-hour meiotic transcriptional program of C. cinerea, encompassing time points prior to haploid nuclear fusion though tetrad formation, using a 70-mer oligonucleotide microarray. As with other organisms, a large proportion (∼20%) of genes are differentially regulated during this developmental process, with successive waves of transcription apparent in nine transcriptional clusters, including one enriched for meiotic functions. C. cinerea and the fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe diverged ∼500–900 million years ago, permitting a comparison of transcriptional programs across a broad evolutionary time scale. Previous studies of S. cerevisiae and S. pombe compared genes that were induced upon entry into meiosis; inclusion of C. cinerea data indicates that meiotic genes are more conserved in their patterns of induction across species than genes not known to be meiotic. In addition, we found that meiotic genes are significantly more conserved in their transcript profiles than genes not known to be meiotic, which indicates a remarkable conservation of the meiotic process across evolutionarily distant organisms. Overall, meiotic function genes are more conserved in both induction and transcript profile than genes not known to be meiotic. However, of 50 meiotic function genes that were co-induced in all three species, 41 transcript profiles were well-correlated in at least two of the three species, but only a single gene (rad50) exhibited coordinated induction and well-correlated transcript profiles in all three species, indicating that co-induction does not necessarily predict correlated expression or vice versa. Differences may reflect differences in meiotic mechanisms or new roles for paralogs. Similarities in induction, transcript profiles, or both, should contribute to gene discovery for orthologs without currently characterized meiotic roles

    A New Strategy for Reporting Specific Protein Binding Events at Aqueous-Liquid Crystal Interfaces in the Presence of Non-Specific Proteins

    No full text
    Aqueous-liquid crystal (LC) interfaces offer promise as responsive interfaces at which biomolecular recognition events can be amplified into macroscopic signals. However, the design of LC interfaces that distinguish between specific and non-specific protein interactions remains an unresolved challenge. Herein, we report the synthesis of amphiphilic monomers, dimers, and trimers conjugated to sulfonamide ligands via triazole rings, their assembly at aqueous-LC interfaces, and the orientational response of LCs to the interactions of carbonic anhydrase II (CAII) and serum albumin with the oligomer-decorated LC interfaces. Of six oligomers synthesized, only dimers without amide methylation were found to assemble at aqueous interfaces of nematic 4-cyano-4'-pentylbiphenyl (5CB) to induce perpendicular LC orientations. At dimer-decorated LC interfaces, we found that concentrations of CAII less than 4 mu M did not measurably perturb the LC but prevented non-specific adsorption and penetration of serum albumin into the dimer-decorated interface that otherwise triggered bright, globular LC optical domains. These experiments and others (including competitive adsorption of CAII, BSA, and lysozyme) support our hypothesis that specific binding of CAII to the dimer prevents LC anchoring transitions triggered by non-specific adsorption of serum albumin. We illustrate the utility of the approach by reporting (i) the relative activity of two small-molecule inhibitors (6-ethoxy-2-benzothiazolesulfonamide and benzenesulfonamide) of CAII to sulfonamide and (ii) proteolytic digestion of a protein (CAII) by thermolysin. Overall, the results in this paper provide new insight into the interactions of proteins at aqueous-LC interfaces and fresh ideas for either blocking non-specific interactions of proteins at surfaces or reporting specific binding events at LC interfaces in the presence of non-specific proteins.11Nsciescopu

    Chromatin: a capacitor of acetate for integrated regulation of gene expression and cell physiology

    No full text
    Cancer tissues with lower global levels of histone acetylation display significantly increased rate of tumor recurrence or cancer-related mortality. The function global regulation of histone acetylation serves for the cell or how lower levels of histone acetylation may contribute to a more aggressive cancer phenotype has been unclear. Chromatin and histone modifications are currently thought to regulate only DNA-based processes. However, recent findings have revealed a novel function for global histone acetylation in direct regulation of cellular physiology. I will discuss how chromatin, by regulating the cellular flux of acetate, may integrate control of cellular physiologic state with gene expression and help explain the observations in cancer tissues
    corecore