38 research outputs found

    Role of CPEB in Senescence and Inflammation: A Dissertation

    Get PDF
    Cytoplasmic polyadenylation element-binding protein (CPEB) is a sequence-specific RNA-binding protein that promotes polyadenylation-induced translation. While a CPEB knockout (KO) mouse is sterile but overtly normal, embryo fibroblasts derived from this mouse (MEFs) do not enter senescence in culture as do wild-type MEFs, but instead are immortal. Exogenous CPEB restores senescence in the KO MEFs and also induces precocious senescence in wild-type MEFs. CPEB cannot stimulate senescence in MEFs lacking the tumor suppressors p53, p19ARF, or p16INK4A; however, the mRNAs encoding these proteins are unlikely targets of CPEB since their expression is the same in wild-type and KO MEFs. Conversely, Ras cannot induce senescence in MEFs lacking CPEB, suggesting that it may lie upstream of CPEB. One target of CPEB regulation is myc mRNA, whose unregulated translation in the KO MEFs may cause them to bypass senescence. Thus, CPEB appears to act as a translational repressor protein to control myc translation and resulting cellular senescence. CPEB is a sequence-specific RNA binding protein that regulates cytoplasmic polyadenylation-induced translation. We report here that CPEB KO mice are hypersensitive to LPS-induced endotoxic shock, which correlates with elevated serum levels of the proinflammatory cytokines IL-6, IL-8 and IL-12. Peritoneal macrophages from the KO mice, as well as a CPEB-depleted macrophage cell line, not only secrete more IL-6 than control cells in response to LPS, but also have prolonged retention of NFϰB in the nucleus, which is responsible for elevated IL-6 transcription. The amount of nuclear NFϰB correlates with reduced levels of IϰBα, which is hyperphosphorylated and rapidly degraded. Collectively, these data suggest that CPEB deficiency enhances the inflammatory response via delayed resolution of NFϰB signaling

    Oil spill problems and sustainable response strategies through new technologies

    Get PDF
    Crude oil and petroleum products are widespread water and soil pollutants resulting from marine and terrestrial spillages. International statistics of oil spill sizes for all incidents indicate that the majority of oil spills are small (less than 7 tonnes). The major accidents that happen in the oil industry contribute only a small fraction of the total oil which enters the environment. However, the nature of accidental releases is that they highly pollute small areas and have the potential to devastate the biota locally. There are several routes by which oil can get back to humans from accidental spills, e.g. through accumulation in fish and shellfish, through consumption of contaminated groundwater. Although advances have been made in the prevention of accidents, this does not apply in all countries, and by the random nature of oil spill events, total prevention is not feasible. Therefore, considerable world-wide effort has gone into strategies for minimising accidental spills and the design of new remedial technologies. This paper summarizes new knowledge as well as research and technology gaps essential for developing appropriate decision-making tools in actual spill scenarios. Since oil exploration is being driven into deeper waters and more remote, fragile environments, the risk of future accidents becomes much higher. The innovative safety and accident prevention approaches summarized in this paper are currently important for a range of stakeholders, including the oil industry, the scientific community and the public. Ultimately an integrated approach to prevention and remediation that accelerates an early warning protocol in the event of a spill would get the most appropriate technology selected and implemented as early as possible-the first few hours after a spill are crucial to the outcome of the remedial effort. A particular focus is made on bioremediation as environmentally harmless, cost-effective and relatively inexpensive technology. Greater penetration into the remedial technologies market depends on the harmonization of environment legislation and the application of modern laboratory techniques, e.g. ecogenomics, to improve the predictability of bioremediation

    In vitro cytokine stimulation assay for glycolipid biosurfactant from Rhodococcus ruber: role of monocyte adhesion

    Full text link
    Glycolipid biosurfactant (GLB) from Rhodococcus ruber IEGM 231 was found to stimulate tumor necrosis factor-α (TNF-α), interleukin (IL) -1β and IL-6 production when applied as an ultrasonic emulsion to the adherent human peripheral blood monocyte culture. However, a lack of cytokine-stimulating activity was registered with the GLB applied as a hydrophobic film coating in 24-well culture plates, indicating that it may have been due to its inhibitory effect on monocyte adhesion. The mode of GLB application may therefore play an important role in in vitro assay of immunostimulatory activity of this compound as well as other bacterial glycolipids. Additionally, GLB from R. ruber displayed no cytotoxicity against human lymphocytes and therefore could be proposed as a potential immunomodulating and antitumor agent

    A novel phosphatidylinositol(3,4,5)P3 pathway in fission yeast

    Get PDF
    The mammalian tumor suppressor, phosphatase and tensin homologue deleted on chromosome 10 (PTEN), inhibits cell growth and survival by dephosphorylating phosphatidylinositol-(3,4,5)-trisphosphate (PI[3,4,5]P3). We have found a homologue of PTEN in the fission yeast, Schizosaccharomyces pombe (ptn1). This was an unexpected finding because yeast (S. pombe and Saccharomyces cerevisiae) lack the class I phosphoinositide 3-kinases that generate PI(3,4,5)P3 in higher eukaryotes. Indeed, PI(3,4,5)P3 has not been detected in yeast. Surprisingly, upon deletion of ptn1 in S. pombe, PI(3,4,5)P3 became detectable at levels comparable to those in mammalian cells, indicating that a pathway exists for synthesis of this lipid and that the S. pombe ptn1, like mammalian PTEN, suppresses PI(3,4,5)P3 levels. By examining various mutants, we show that synthesis of PI(3,4,5)P3 in S. pombe requires the class III phosphoinositide 3-kinase, vps34p, and the phosphatidylinositol-4-phosphate 5-kinase, its3p, but does not require the phosphatidylinositol-3-phosphate 5-kinase, fab1p. These studies suggest that a pathway for PI(3,4,5)P3 synthesis downstream of a class III phosphoinositide 3-kinase evolved before the appearance of class I phosphoinositide 3-kinases

    Potential risks of antibiotic resistant bacteria and genes in bioremediation of petroleum hydrocarbon contaminated soils

    Get PDF
    Bioremediation represents a sustainable approach to remediating petroleum hydrocarbon contaminated soils. One aspect of sustainability includes the sourcing of nutrients used to stimulate hydrocarbon-degrading microbial populations. Organic nutrients such as animal manure and sewage sludge may be perceived as more sustainable than conventional inorganic fertilizers. However, organic nutrients often contain antibiotic residues and resistant bacteria (along with resistance genes and mobile genetic elements). This is further exacerbated since antibiotic resistant bacteria may become more abundant in contaminated soils due to co-selection pressures from pollutants such as metals and hydrocarbons. We review the issues surrounding bioremediation of petroleum-hydrocarbon contaminated soils, as an example, and consider the potential human-health risks from antibiotic resistant bacteria. While awareness is coming to light, the relationship between contaminated land and antibiotic resistance remains largely under-explored. The risk of horizontal gene transfer between soil microorganisms, commensal bacteria and/or human pathogens needs to be further elucidated, and the environmental triggers for gene transfer need to be better understood. Findings of antibiotic resistance from animal manures are emerging, but even fewer bioremediation studies using sewage sludge have made any reference to antibiotic resistance. Resistance mechanisms, including those to antibiotics, have been considered by some authors to be a positive trait associated with resilience in strains intended for bioremediation. Nevertheless, recognition of the potential risks associated with antibiotic resistant bacteria and genes in contaminated soils appears to be increasing and requires further investigation. Careful selection of bacterial candidates for bioremediation possessing minimal antibiotic resistance as well as pre-treatment of organic wastes to reduce selective pressures (e.g., antibiotic residues) are suggested to prevent environmental contamination with antibiotic-resistant bacteria and genes

    Cytoplasmic Polyadenylation Element Binding Protein Deficiency Stimulates PTEN and Stat3 mRNA Translation and Induces Hepatic Insulin Resistance

    Get PDF
    The cytoplasmic polyadenylation element binding protein CPEB1 (CPEB) regulates germ cell development, synaptic plasticity, and cellular senescence. A microarray analysis of mRNAs regulated by CPEB unexpectedly showed that several encoded proteins are involved in insulin signaling. An investigation of Cpeb1 knockout mice revealed that the expression of two particular negative regulators of insulin action, PTEN and Stat3, were aberrantly increased. Insulin signaling to Akt was attenuated in livers of CPEB–deficient mice, suggesting that they might be defective in regulating glucose homeostasis. Indeed, when the Cpeb1 knockout mice were fed a high-fat diet, their livers became insulin-resistant. Analysis of HepG2 cells, a human liver cell line, depleted of CPEB demonstrated that this protein directly regulates the translation of PTEN and Stat3 mRNAs. Our results show that CPEB regulated translation is a key process involved in insulin signaling

    Advanced Rhodococcus Biocatalysts for Environmental Biotechnologies

    No full text
    The review is devoted to biocatalysts based on actinobacteria of the genus Rhodococcus, which are promising for environmental biotechnologies. In the review, biotechnological advantages of Rhodococcus bacteria are evaluated, approaches used to develop robust and efficient biocatalysts are discussed, and their relevant applications are given. We focus on Rhodococcus cell immobilization in detail (methods of immobilization, criteria for strains and carriers, and optimization of process parameters) as the most efficient approach for stabilizing biocatalysts. It is shown that advanced Rhodococcus biocatalysts with improved working characteristics, enhanced stress tolerance, high catalytic activities, human and environment friendly, and commercially viable are developed, which are suitable for wastewater treatment, bioremediation, and biofuel production

    Effects of Nickel Nanoparticles on Rhodococcus Cell Surface Morphology and Nanomechanical Properties

    No full text
    Nickel nanoparticles (NPs) are used for soil remediation and wastewater treatment due to their high adsorption capacity against complex organic pollutants. However, despite the growing use of nickel NPs, their toxicological towards environmental bacteria have not been sufficiently studied. Actinobacteria of the genus Rhodococcus are valuable bioremediation agents degrading a range of harmful and recalcitrant chemicals. Both positive and negative effects of metal ions and NPs on the biodegradation of organic pollutants by Rhodococcus were revealed, however, the mechanisms of such interactions, in addition to direct toxic effects, remain unclear. In the present work, the influence of nickel NPs on the viability, surface topology and nanomechanical properties of Rhodococcus cells have been studied. Bacterial adaptations to high (up to 1.0 g/L) concentrations of nickel NPs during prolonged (24 and 48 h) exposure were detected using combined confocal laser scanning and atomic force microscopy. Incubation with nickel NPs resulted in a 1.25–1.5-fold increase in the relative surface area and roughness, changes in cellular charge and adhesion characteristics, as well as a 2–8-fold decrease in the Young’s modulus of Rhodococcus ruber IEGM 231 cells. Presumably, the treatment of rhodococcal cells with sublethal concentrations (0.01–0.1 g/L) of nickel NPs facilitates the colonization of surfaces, which is important in the production of immobilized biocatalysts based on whole bacterial cells adsorbed on solid carriers. Based on the data obtained, cell surface functionalizing with NPs is possible to enhance adhesive and catalytic properties of bacteria suitable for environmental applications

    Rhodococcus strains from the specialized collection of alkanotrophs for biodegradation of aromatic compounds

    Get PDF
    The ability to degrade aromatic hydrocarbons, including (i) benzene, toluene, o-xylene, naphthalene, anthracene, phenanthrene, benzo[a]anthracene, and benzo[a]pyrene; (ii) polar substituted derivatives of benzene, including phenol and aniline; (iii) N-heterocyclic compounds, including pyridine; 2-, 3-, and 4-picolines; 2- and 6-lutidine; 2- and 4-hydroxypyridines; (iv) derivatives of aromatic acids, including coumarin, of 133 Rhodococcus strains from the Regional Specialized Collection of Alkanotrophic Microorganisms was demonstrated. The minimal inhibitory concentrations of these aromatic compounds for Rhodococcus varied in a wide range from 0.2 up to 50.0 mM. o-Xylene and polycyclic aromatic hydrocarbons (PAHs) were the less-toxic and preferred aromatic growth substrates. Rhodococcus bacteria introduced into the PAH-contaminated model soil resulted in a 43% removal of PAHs at an initial concentration 1 g/kg within 213 days, which was three times higher than that in the control soil. As a result of the analysis of biodegradation genes, metabolic pathways for aromatic hydrocarbons, phenol, and nitrogen-containing aromatic compounds in Rhodococcus, proceeding through the formation of catechol as a key metabolite with its following ortho-cleavage or via the hydrogenation of aromatic rings, were verified

    Cellular Modifications of Rhodococci Exposed to Separate and Combined Effects of Pharmaceutical Pollutants

    No full text
    Actinomycetes of the genus Rhodococcus (class Actinomycetia) are dominant dwellers of biotopes with anthropogenic load. They serve as a natural system of primary response to xenobiotics in open ecosystems, initiate defensive responses in the presence of pollutants, and are regarded as ideal agents capable of transforming and degrading pharmaceuticals. Here, the ability of selected Rhodococcus strains to co-metabolize nonsteroidal anti-inflammatory drugs (ibuprofen, meloxicam, and naproxen) and information on the protective mechanisms of rhodococci against toxic effects of pharmaceuticals, individually or in a mixture, have been demonstrated. For the first time, R. ruber IEGM 439 provided complete decomposition of 100 mg/L meloxicam after seven days. It was shown that versatile cellular modifications occurring at the early development stages of nonspecific reactions of Rhodococcus spp. in response to separate and combined effects of the tested pharmaceuticals included changes in electrokinetic characteristics and catalase activity; transition from unicellular to multicellular life forms accompanied by pronounced morphological abnormalities; changes in the average size of vegetative cells and surface area-to-volume ratio; and the formation of linked cell assemblages. The obtained data are considered as adaptation mechanisms in rhodococci, and consequently their increased resistance to separate and combined effects of ibuprofen, meloxicam, and naproxen
    corecore