1,251 research outputs found

    Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation

    Full text link
    The intrinsic anomalous Hall effect in ferromagnets depends on subtle spin-orbit-induced effects in the electronic structure, and recent ab-initio studies found that it was necessary to sample the Brillouin zone at millions of k-points to converge the calculation. We present an efficient first-principles approach for computing the anomalous Hall conductivity. We start out by performing a conventional electronic-structure calculation including spin-orbit coupling on a uniform and relatively coarse k-point mesh. From the resulting Bloch states, maximally-localized Wannier functions are constructed which reproduce the ab-initio states up to the Fermi level. The Hamiltonian and position-operator matrix elements, needed to represent the energy bands and Berry curvatures, are then set up between the Wannier orbitals. This completes the first stage of the calculation, whereby the low-energy ab-initio problem is transformed into an effective tight-binding form. The second stage only involves Fourier transforms and unitary transformations of the small matrices set up in the first stage. With these inexpensive operations, the quantities of interest are interpolated onto a dense k-point mesh and used to evaluate the anomalous Hall conductivity as a Brillouin zone integral. The present scheme, which also avoids the cumbersome summation over all unoccupied states in the Kubo formula, is applied to bcc Fe, giving excellent agreement with conventional, less efficient first-principles calculations. Remarkably, we find that more than 99% of the effect can be recovered by keeping a set of terms depending only on the Hamiltonian matrix elements, not on matrix elements of the position operator.Comment: 16 pages, 7 figure

    Spectral and Fermi surface properties from Wannier interpolation

    Full text link
    We present an efficient first-principles approach for calculating Fermi surface averages and spectral properties of solids, and use it to compute the low-field Hall coefficient of several cubic metals and the magnetic circular dichroism of iron. The first step is to perform a conventional first-principles calculation and store the low-lying Bloch functions evaluated on a uniform grid of k-points in the Brillouin zone. We then map those states onto a set of maximally-localized Wannier functions, and evaluate the matrix elements of the Hamiltonian and the other needed operators between the Wannier orbitals, thus setting up an ``exact tight-binding model.'' In this compact representation the k-space quantities are evaluated inexpensively using a generalized Slater-Koster interpolation. Because of the strong localization of the Wannier orbitals in real space, the smoothness and accuracy of the k-space interpolation increases rapidly with the number of grid points originally used to construct the Wannier functions. This allows k-space integrals to be performed with ab-initio accuracy at low cost. In the Wannier representation, band gradients, effective masses, and other k-derivatives needed for transport and optical coefficients can be evaluated analytically, producing numerically stable results even at band crossings and near weak avoided crossings.Comment: 12 pages, 7 figure

    Duhamel versus transanal endorectal pull through (TERPT) for the surgical treatment of Hirschsprung’s disease

    Get PDF
    For the surgical treatment of Hirschsprung’s disease, several surgical techniques are used to resect the distal aganglionic colon. Two frequently used techniques are the Duhamel procedure and the transanal endorectal pull-through procedure. During the ‘8th Pediatric Colorectal Course’ in Nijmegen, November 2015, a workshop was organized to share experiences of both techniques by several experts in the field and to discuss (long term) outcomes. Specifically, the objective of the meeting was to discuss the main controversies in relation to the technical execution of both procedures in order to make an initial assessment of the limitations of available evidence for clinical decision-making and to formulate a set of preliminary recommendations for current clinical care and future research

    Experimental estimation of entanglement at the quantum limit

    Get PDF
    Entanglement is the central resource of quantum information processing and the precise characterization of entangled states is a crucial issue for the development of quantum technologies. This leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated with the ultimate precision allowed by quantum mechanics.Comment: 4 pages, 3 figure

    Structure and star formation in galaxies out to z=3: evidence for surface density dependent evolution and upsizing

    Full text link
    We present an analysis of galaxies in the CDF-South. We find a tight relation to z=3 between color and size at a given mass, with red galaxies being small, and blue galaxies being large. We show that the relation is driven by stellar surface density or inferred velocity dispersion: galaxies with high surface density are red and have low specific star formation rates, and galaxies with low surface density are blue and have high specific star formation rates. Surface density and inferred velocity dispersion are better correlated with specific star formation rate and color than stellar mass. Hence stellar mass by itself is not a good predictor of the star formation history of galaxies. In general, galaxies at a given surface density have higher specific star formation rates at higher redshift. Specifically, galaxies with a surface density of 1-3 10^9 Msun/kpc^2 are "red and dead" at low redshift, approximately 50% are forming stars at z=1, and almost all are forming stars by z=2. This provides direct additional evidence for the late evolution of galaxies onto the red sequence. The sizes of galaxies at a given mass evolve like 1/(1+z)^(0.59 +- 0.10). Hence galaxies undergo significant upsizing in their history. The size evolution is fastest for the highest mass galaxies, and quiescent galaxies. The persistence of the structural relations from z=0 to z=2.5, and the upsizing of galaxies imply that a relation analogous to the Hubble sequence exists out to z=2.5, and possibly beyond. The star forming galaxies at z >= 1.5 are quite different from star forming galaxies at z=0, as they have likely very high gas fractions, and star formation time scales comparable to the orbital time.Comment: 20 pages, accepted for publication in ApJ, 2008, 68

    Unveiling evolutionary algorithm representation with DU maps

    Get PDF
    Evolutionary algorithms (EAs) have proven to be effective in tackling problems in many different domains. However, users are often required to spend a significant amount of effort in fine-tuning the EA parameters in order to make the algorithm work. In principle, visualization tools may be of great help in this laborious task, but current visualization tools are either EA-specific, and hence hardly available to all users, or too general to convey detailed information. In this work, we study the Diversity and Usage map (DU map), a compact visualization for analyzing a key component of every EA, the representation of solutions. In a single heat map, the DU map visualizes for entire runs how diverse the genotype is across the population and to which degree each gene in the genotype contributes to the solution. We demonstrate the generality of the DU map concept by applying it to six EAs that use different representations (bit and integer strings, trees, ensembles of trees, and neural networks). We present the results of an online user study about the usability of the DU map which confirm the suitability of the proposed tool and provide important insights on our design choices. By providing a visualization tool that can be easily tailored by specifying the diversity (D) and usage (U) functions, the DU map aims at being a powerful analysis tool for EAs practitioners, making EAs more transparent and hence lowering the barrier for their use

    Polarization and Strong Infra-Red Activity in Compressed Solid Hydrogen

    Full text link
    Under a pressure of ~150 GPa solid molecular hydrogen undergoes a phase transition accompanied by a dramatic rise in infra-red absorption in the vibron frequency range. We use the Berry's phase approach to calculate the electric polarization in several candidate structures finding large, anisotropic dynamic charges and strongly IR-active vibron modes. The polarization is shown to be greatly affected by the overlap between the molecules in the crystal, so that the commonly used Clausius-Mossotti description in terms of polarizable, non-overlapping molecular charge densities is inadequate already at low pressures and even more so for the compressed solid.Comment: To appear in Phys. Rev. Let

    Nano-Hall sensors with granular Co-C

    Full text link
    We analyzed the performance of Hall sensors with different Co-C ratios, deposited directly in nano-structured form, using Co2(CO)8Co_2(CO)_8 gas molecules, by focused electron or ion beam induced deposition. Due to the enhanced inter-grain scattering in these granular wires, the Extraordinary Hall Effect can be increased by two orders of magnitude with respect to pure Co, up to a current sensitivity of 1Ω/T1 \Omega/T. We show that the best magnetic field resolution at room temperature is obtained for Co ratios between 60% and 70% and is better than 1ÎŒT/Hz1/21 \mu T/Hz^{1/2}. For an active area of the sensor of 200×200nm2200 \times 200 nm^2, the room temperature magnetic flux resolution is ϕmin=2×10−5ϕ0\phi_{min} = 2\times10^{-5}\phi_0, in the thermal noise frequency range, i.e. above 100 kHz.Comment: 5 pages, 4 figure

    The Galactic Inner Halo: Searching for White Dwarfs and Measuring the Fundamental Galactic Constant, Vo/Ro

    Full text link
    We establish an extragalactic, zero-motion frame of reference within the deepest optical image of a globular star cluster, an HST 123-orbit exposure of M4 (GO 8679, cycle 9). The line of sight beyond M4 (l,b (deg) = 351,16) intersects the inner halo (spheroid) of our Galaxy at a tangent-point distance of 7.6 kpc (for Ro = 8 kpc). We isolate these spheroid stars from the cluster based on their proper motions over the 6-year baseline between these and previous epoch HST data (GO 5461, cycle 4). Distant background galaxies are also found on the same sight line using image-morphology techniques. This fixed reference frame allows us to independently determine the fundamental Galactic constant, Vo/Ro = 25.3 +/- 2.6 km/s/kpc, thus providing a velocity of the Local Standard of Rest, v = 202.7 +/- 24.7 km/s for Ro = 8.0 +/- 0.5 kpc. Secondly, the galaxies allow a direct measurement of M4's absolute proper motion, mu_total = 22.57 +/- 0.76 mas/yr, in excellent agreement with recent studies. The clear separation of galaxies from stars in these deep data also allow us to search for inner-halo white dwarfs. We model the conventional Galactic contributions of white dwarfs along our line of sight and predict 7.9 (thin disk), 6.3 (thick disk) and 2.2 (spheroid) objects to the limiting magnitude at which we can clearly delineate stars from galaxies (V = 29). An additional 2.5 objects are expected from a 20% white dwarf dark halo consisting of 0.5 Mo objects, 70% of which are of the DA type. After considering the kinematics and morphology of the objects in our data set, we find the number of white dwarfs to be consistent with the predictions for each of the conventional populations. However, we do not find any evidence for dark halo white dwarfs.Comment: 31 pages, including 6 diagrams and 2 tables. Accepted for publication in Ap
    • 

    corecore