1,404 research outputs found

    A search for symbiotic behaviour amongst OH/IR colour mimics

    Full text link
    Recent maser surveys have shown that many potential OH/IR stars have no OH masers in their circumstellar envelopes, despite the modest requirements which should be implicitly met by IRAS colour-selected candidates. It has been suggested that these OH/IR colour mimics must have a degenerate companion which dissociates OH molecules and disrupts the masing action, ie. that they are related to symbiotic Miras. Coincidentally, there is a paucity of long-period symbiotic Miras and symbiotic OH/IR stars. Phenomonologically, those that are known seem to cluster in the zone where field Miras transform into OH/IR stars. If it could be proven that OH/IR colour mimics contain a degenerate star, that observable evidence of this star is hidden from view by CS dust whilst it slowly accretes from the wind of its Mira companion, then we have an excellent explanation for not only the existence of OH/IR colour mimics, but also for the low observed frequency of symbiotic OH/IR stars and the common occurrence of very slow novae in long-period symbiotic Miras. Here, we employ radio continuum radiation (which should escape unhindered from within the dust shells) as a simple probe of the postulated hot degenerate companions which would inevitably ionize a region of their surrounding gas. We compare the radio and infrared properties of the colour mimics with those of normal symbiotic Miras, using the strong correlation between radio and mid-IR emission in symbiotic stars. We show that if a hot companion exists then, unlike their symbiotic counterparts, they must produce radiation-bounded nebulae. Our observations provide no support for the above scenario for the lack of observed masers, but neither do they permit a rejection of this scenario.Comment: 6 pages; no figures attached; LaTeX (MN style); postscript figures via anonymous ftp in users/ers/mimic-figs on astro.caltech.edu; University of Toronto pre-print; ERSRJI

    Herschel and SCUBA-2 imaging and spectroscopy of a bright, lensed submillimetre galaxy at z = 2.3

    Get PDF
    We present a detailed analysis of the far-infrared (-IR) properties of the bright, lensed, z = 2.3, submillimetre-selected galaxy (SMG), SMM J2135-0102 (hereafter SMM J2135), using new observations with Herschel, SCUBA-2 and the Very Large Array (VLA). These data allow us to constrain the galaxy's spectral energy distribution (SED) and show that it has an intrinsic rest-frame 8-1000-ÎŒm luminosity, L_(bol), of (2.3±0.2) × 10^(12) L_☉ and a likely star-formation rate (SFR) of ~400 yr-1. The galaxy sits on the far-IR/radio correlation for far-IR-selected galaxies. At ≳70 ÎŒm, the SED can be described adequately by dust components with dust temperatures, T_d ~ 30 and 60 k. Using SPIRE's Fourier- transform spectrometer (FTS) we report a detection of the [C ii] 158 ÎŒm cooling line. If the [C ii], CO and far-IR continuum arise in photo-dissociation regions (PDRs), we derive a characteristic gas density, n ~ 10^3 cm^(-3), and a far-ultraviolet (-UV) radiation field, G_0, 10^(3)× stronger than the Milky Way. L_[CII]/L_(bol) is significantly higher than in local ultra-luminous IR galaxies (ULIRGs) but similar to the values found in local star-forming galaxies and starburst nuclei. This is consistent with SMM J2135 being powered by starburst clumps distributed across ~2 kpc, evidence that SMGs are not simply scaled-up ULIRGs. Our results show that SPIRE's FTS has the ability to measure the redshifts of distant, obscured galaxies via the blind detection of atomic cooling lines, but it will not be competitive with ground-based CO-line searches. It will, however, allow detailed study of the integrated properties of high-redshift galaxies, as well as the chemistry of their interstellar medium (ISM), once more suitably bright candidates have been found

    Discovery of hydroxyl and water masers in R Aquarii and H1-36 Arae

    Full text link
    We present the first results from an all-sky maser-line survey of symbiotic Miras. Interferometric spectral-line observations of R Aqr and H1-36 Arae have revealed a 22-GHz water maser in the former and 1612-MHz hydroxyl and weak 22-GHz water maser emission from the latter. H1-36 has thus become the first known symbiotic OH/IR star. We have also detected weak OH line emission from the vicinity of R Aqr, but we note that there are small discrepencies between the OH- and H2O-line velocities and positions. These detections demonstrate unequivocally that dust can shield some circumstellar hydroxyl and water molecules from dissociation, even in systems which possess intense local sources of UV. Finally, we discuss some of the implications of these observations. The narrow profile of the water maser in R Aqr means that there may finally be an opportunity to determine the system's orbital parameters. We also point out that high resolution synthesis observations may trace the distribution of dust in H1-36 and R Aqr, possibly throwing light on the mass-loss process in symbiotic Miras and placing constraints on the amount of collimation experienced by UV radiation from their hot, compact companions.Comment: 7 pages; no figures attached; LaTex (MN style); postscript figures via anonymous ftp in /users/ers on astro.caltech.edu; University of Toronto pre-print; ERSRJI

    Mm/submm observations of symbiotic binary stars: implications for the mass loss and mass exchange

    Get PDF
    We discuss mm/submm spectra of a sample of symbiotic binary systems, and compare them with popular models proposed to account for their radio emission. We find that radio emission from quiescent S-type systems originates from a conical region of the red giant wind ionized by the hot companion (the STB model), whereas more complicated models involving winds from both components and their interaction are required to account for radio emission of active systems. We also find that the giant mass-loss rates derived from our observations are systematically higher than those for single cool giants. This result is in agreement with conclusions derived from IRAS observations and with requirements of models for the hot component.Comment: 7 pages, 8 figures. Paper presented at COSPAR 2000 "New results in FIR and Submm Astronomy", to be published in Advances in Space Researc

    The evolutionary sequence of active galactic nuclei and galaxy formation revealed

    Get PDF
    Today, almost every galaxy spheroid contains a massive black hole: a remnant of, and testament to, a period in its evolution when it contained an active galactic nucleus (AGN). However, the sequence and timescales of the formation of the black hole and surrounding spheroid of stars are completely unknown, leaving a large gap in our knowledge of how the universe attained its present appearance. Here we present submillimeter observations of matched samples of X-ray absorbed and unabsorbed AGNs that have luminosities and redshifts characteristic of the sources responsible for most of the mass in present-day black holes. Strong submillimeter emission, an isotropic signature of copious star formation, is found only in the X-ray–absorbed sample, ruling out orientation effects as the cause of the absorption. The space density and luminosity range of the X-ray–absorbed AGNs indicate that they are undergoing the transition between a hidden growth phase and an unabsorbed AGN phase and imply that the X-ray–absorbed period in the AGN's evolution coincides with the formation of the galaxy spheroid

    X-ray absorbed QSOs and the QSO evolutionary sequence

    Get PDF
    Unexpected in the AGN unified scheme, there exists a population of broad-line z~2 QSOs which have heavily absorbed X-ray spectra. These objects constitute 10% of the population at luminosities and redshifts characteristic of the main producers of QSO luminosity in the Universe. Our follow up observations in the submm show that these QSOs are often embedded in ultraluminous starburst galaxies, unlike most QSOs at the same redshifts and luminosities. The radically different star formation properties between the absorbed and unabsorbed QSOs implies that the X-ray absorption is unrelated to the torus invoked in AGN unification schemes. Instead, these results suggest that the objects represent a transitional phase in an evolutionary sequence relating the growth of massive black holes to the formation of galaxies. The most puzzling question about these objects has always been the nature of the X-ray absorber. We present our study of the X-ray absorbers based on deep (50-100ks) XMM-Newton spectroscopy. We show that the absorption is most likely due to a dense ionised wind driven by the QSO. This wind could be the mechanism by which the QSO terminates the star formation in the host galaxy, and ends the supply of accretion material, to produce the present day black hole/spheroid mass ratio.Comment: 4 pages, to appear in conference proceedings "Studying Galaxy Evolution with Spitzer and Herschel
    • 

    corecore