research

The evolutionary sequence of active galactic nuclei and galaxy formation revealed

Abstract

Today, almost every galaxy spheroid contains a massive black hole: a remnant of, and testament to, a period in its evolution when it contained an active galactic nucleus (AGN). However, the sequence and timescales of the formation of the black hole and surrounding spheroid of stars are completely unknown, leaving a large gap in our knowledge of how the universe attained its present appearance. Here we present submillimeter observations of matched samples of X-ray absorbed and unabsorbed AGNs that have luminosities and redshifts characteristic of the sources responsible for most of the mass in present-day black holes. Strong submillimeter emission, an isotropic signature of copious star formation, is found only in the X-ray–absorbed sample, ruling out orientation effects as the cause of the absorption. The space density and luminosity range of the X-ray–absorbed AGNs indicate that they are undergoing the transition between a hidden growth phase and an unabsorbed AGN phase and imply that the X-ray–absorbed period in the AGN's evolution coincides with the formation of the galaxy spheroid

    Similar works