140 research outputs found

    Orbital and physical parameters of eclipsing binaries from the ASAS catalogue -- III. Two new low-mass systems with rapidly evolving spots

    Full text link
    We present the results of our spectroscopic and photometric analysis of two newly discovered low-mass detached eclipsing binaries found in the All-Sky Automated Survey (ASAS) catalogue: ASAS J093814-0104.4 and ASAS J212954-5620.1. Using the GIRAFFE instrument on the 1.9-m Radcliffe telescope at SAAO and the UCLES spectrograph on the 3.9-m Anglo-Australian Telescope, we obtained high-resolution spectra of both objects and derived their radial velocities (RVs) at various orbital phases. The RVs of both objects were measured with the TODCOR technique using synthetic template spectra as references. We also obtained V and I band photometry using the 1.0-m Elizabeth telescope at SAAO and the 0.4-m PROMPT instruments located at the CTIO. The orbital and physical parameters of the systems were derived with PHOEBE and JKTEBOP codes. We compared our results with several sets of widely-used isochrones. Our multi-epoch photometric observations demonstrate that both objects show significant out-of-eclipse modulations, which vary in time. We believe that this effect is caused by stellar spots, which evolve on time scales of tens of days. For this reason, we constructed our models on the basis of photometric observations spanning short time scales (less than a month). Our modeling indicates that (1) ASAS-09 is a main sequence active system with nearly-twin components with masses of M1 = 0.771(33) Msun, M2 = 0.768(21) Msun and radii of R1 = 0.772(12) Rsun and R2 = 0.769(13) Rsun. (2) ASAS-21 is a main sequence active binary with component masses of M1 = 0.833(17) Msun, M2 = 0.703(13) Msun and radii of R1 = 0.845(12) Rsun and R2 = 0.718(17) Rsun. Both systems confirm the characteristic of active low-mass stars, for which the observed radii are larger and the temperatures lower than predicted by evolutionary models. Other parameters agree within errors with the models of main sequence stars.Comment: 15 pages, 7 figures, 7 tables, to appear in A&

    Confirmation of the Luminous Blue Variable status of MWC 930

    Get PDF
    We present spectroscopic and photometric observations of the emission-line star MWC 930 (V446 Sct) during its long-term optical brightening in 2006--2013. Based on our earlier data we suggested that the object has features found in Luminous Blue Variables (LBV), such as a high luminosity (~3 10^5 Lsun, a low wind terminal velocity (~ 140 km/s), and a tendency to show strong brightness variations (~1 mag over 20 years). For the last ~7 years it has been exhibiting a continuous optical and near-IR brightening along with a change of the emission-line spectrum appearance and cooling of the star's photosphere. We present the object's VV--band light curve, analyze the spectral variations, and compare the observed properties with those of other recognized Galactic LBVs, such as AG Car and HR Car. Overall we conclude the MWC 930 is a bona fide Galactic LBV that is currently in the middle of an S Dor cycle.Comment: 12 pages, 7 figure

    PROMPT Observations of the Early-Time Optical Afterglow of GRB 060607A

    Get PDF
    PROMPT (Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes) observed the early-time optical afterglow of GRB 060607A and obtained a densely sampled multiwavelength light curve that begins only tens of seconds after the GRB. Located at Cerro Tololo Inter-American Observatory in Chile, PROMPT is designed to observe the afterglows of gamma-ray bursts using multiple automated 0.4-m telescopes that image simultaneously in many filters when the afterglow is bright and may be highly variable. The data span the interval from 44 seconds after the GRB trigger to 3.3 hours in the Bgri filters. We observe an initial peak in the light curve at approximately three minutes, followed by rebrightenings peaking around 40 minutes and again at 66 minutes. Although our data overlap with the early Swift gamma-ray and x-ray light curves, we do not see a correlation between the optical and high-energy flares. We do not find evidence for spectral evolution throughout the observations. We model the variations in the light curves and find that the most likely cause of the rebrightening episodes is a refreshment of the forward shock preceded by a rapidly fading reverse shock component, although other explanations are plausible.Comment: 23 pages, 3 figures, accepted to Ap

    The CHilean Automatic Supernova sEarch (CHASE)

    Full text link
    The CHASE project started in 2007 with the aim of providing young southern supernovae (SNe) to the Carnegie Supernova Project (CSP) and Millennium Center for Supernova Studies (MCSS) follow-up programs. So far CHASE has discovered 33 SNe with an average of more than 2.5 SNe per month in 2008. In addition to the search we are carrying out a follow-up program targeting bright SNe. Our fully automated data reduction allows us to follow the evolution on the light curve in real time, triggering further observations if something potentially interesting is detectedComment: 4 pages, 2 figures, conference proceedin

    Fortnightly Fluctuations in the O-C Diagram of CS 1246

    Get PDF
    Dominated by a single, large-amplitude pulsation mode, the rapidly-pulsating hot subdwarf B star CS 1246 is a prime candidate for a long-term O-C diagram study. We collected nearly 400 hours of photometry with the PROMPT telescopes over a time span of 14 months to begin looking for secular variations in the pulse timings. Interestingly, the O-C diagram is dominated by a strong sinusoidal pattern with a period of 14.1 days and an amplitude of 10.7 light-seconds. Underneath this sine wave is a secular trend implying a decrease in the 371.7-s pulsational period of Pdot = -1.9 x 10^-11, which we attribute to the evolution of the star through the H-R diagram. The sinusoidal variation could be produced by the presence of a low-mass companion, with m sin i ~ 0.12 Msun, orbiting the subdwarf B star at a distance of 20 Rsun. An analysis of the combined light curve reveals the presence of a low-amplitude first harmonic to the main pulsation mode.Comment: Accepted for publication in MNRAS. 11 pages, 8 figures, 5 table

    Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - VIII. The totally-eclipsing double-giant system HD 187669

    Get PDF
    We present the first full orbital and physical analysis of HD 187669, recognized by the All-Sky Automated Survey (ASAS) as the eclipsing binary ASAS J195222-3233.7. We combined multi-band photometry from the ASAS and SuperWASP public archives and 0.41-m PROMPT robotic telescopes with our high-precision radial velocities from the HARPS spectrograph. Two different approaches were used for the analysis: 1) fitting to all data simultaneously with the WD code, and 2) analysing each light curve (with JKTEBOP) and RVs separately and combining the partial results at the end. This system also shows a total primary (deeper) eclipse, lasting for about 6 days. A spectrum obtained during this eclipse was used to perform atmospheric analysis with the MOOG and SME codes in order to constrain physical parameters of the secondary. We found that ASAS J195222-3233.7 is a double-lined spectroscopic binary composed of two evolved, late-type giants, with masses of M1=1.504±0.004M_1 = 1.504\pm0.004 and M2=1.505±0.004M_2=1.505\pm0.004 M⊙_\odot, and radii of R1=11.33±0.28R_1 = 11.33\pm0.28 and R2=22.62±0.50R_2=22.62\pm0.50 R⊙_\odot, slightly less metal abundant than the Sun, on a P=88.39P=88.39 d orbit. Its properties are well reproduced by a 2.38 Gyr isochrone, and thanks to the metallicity estimation from the totality spectrum and high precision in masses, it was possible to constrain the age down to 0.1 Gyr. It is the first so evolved galactic eclipsing binary measured with such a good accuracy, and as such is a unique benchmark for studying the late stages of stellar evolution.Comment: Accepted for publication in MNRAS. 12 pages, 7 figures, 9 tables (Table 1 available in the online version of the journal

    IGR J19552+0044: A new asynchronous short period polar: "Filling the gap between intermediate and ordinary polars"

    Full text link
    Based on XMM--Newton X-ray observations IGR J19552+0044 appears to be either a pre-polar or an asynchronous polar. We conducted follow-up optical observations to identify the sources and periods of variability precisely and to classify this X-ray source correctly. Extensive multicolor photometric and medium- to high-resolution spectroscopy observations were performed and period search codes were applied to sort out the complex variability of the object. We found firm evidence of discording spectroscopic (81.29+/-0.01m) and photometric (83.599+/-0.002m) periods that we ascribe to the white dwarf (WD)\ spin period and binary orbital period, respectively. This confirms that IGR J19552+0044 is an asynchronous polar. Wavelength-dependent variability and its continuously changing shape point at a cyclotron emission from a magnetic WD with a relatively low magnetic field below 20 MG. The difference between the WD spin period and the binary orbital period proves that IGR J19552+0044 is a polar with the largest known degree of asynchronism (0.97 or 3%).Comment: 9 pages, 10 figures, A&A accepte
    • …
    corecore