561 research outputs found

    Quantitative variations in the expression of the mouse serum antigen Ss and its sex-limited allotype Slp

    Full text link
    A radial immunodiffusion assay for quantitation of the Ss and Slp serum antigens is described. Significant differences between the mean serum concentrations of Ss and Slp were found among various inbred strains. Some of these differences have been shown to be associated with the H-2 haplotype. The quantitative difference between Slp levels associated with the H-2 a and H-2 S haplotypes has been used as a marker for the S region in the analysis of certain H-2 recombinant strains [A.TH, B10.S(7R), B10.S(9R), and B10.BSVS]. Male mice of two strains with the H-2 b haplotype have been shown to have significantly lower levels of Ss compared to males of the other strains tested. Male mice of every strain examined were found to have significantly higher levels of Ss in their serum than females of the same strain. The molecular relationship and developmental patterns of the Ss and Slp antigens have also been investigated using the radial immunodiffusion assay.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44121/1/10528_2004_Article_BF00485949.pd

    Identification of novel regulators in T-cell differentiation of aplastic anemia patients

    Get PDF
    BACKGROUND: Aplastic anemia (AA) is a bone marrow failure syndrome mostly characterized by an immune-mediated destruction of marrow hematopoietic progenitor/stem cells. The resulting hypocellularity limits a detailed analysis of the cellular immune response. To overcome this technical problem we performed a microarray analysis of CD3(+ )T-cells derived from bone marrow aspirates and peripheral blood samples of newly diagnosed AA patients and healthy volunteers. Two AA patients were additionally analyzed after achieving a partial remission following immunosuppression. The regulation of selected candidate genes was confirmed by real-time RT-PCR. RESULTS: Among more than 22.200 transcripts, 583 genes were differentially expressed in the bone marrow of AA patients compared to healthy controls. Dysregulated genes are involved in T-cell mediated cytotoxicity, immune response of Th1 differentiated T-cells, and major regulators of immune function. In hematological remission the expression levels of several candidate genes tend to normalize, such as immune regulators and genes involved in proinflammatory immune response. CONCLUSION: Our study suggests a pivotal role of Th1/Tc1 differentiated T-cells in immune-mediated marrow destruction of AA patients. Most importantly, immune regulatory genes could be identified, which are likely involved in the recovery of hematopoiesis and may help to design new therapeutic strategies in bone marrow failure syndromes

    Analysis of hepatitis C virus RNA dimerization and core–RNA interactions

    Get PDF
    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3′-untranslated region (3′-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623–2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3′-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus

    Mucosal Therapy of Multi-Drug Resistant Tuberculosis With IgA and Interferon-γ

    Get PDF
    New evidence has been emerging that antibodies can be protective in various experimental models of tuberculosis. Here, we report on protection against multidrug-resistant Mycobacterium tuberculosis (MDR-TB) infection using a combination of the human monoclonal IgA 2E9 antibody against the alpha-crystallin (Acr, HspX) antigen and mouse interferon-gamma in mice transgenic for the human IgA receptor, CD89. The effect of the combined mucosal IgA and IFN-γ; treatment was strongest (50-fold reduction) when therapy was applied at the time of infection, but a statistically significant reduction of lung bacterial load was observed even when the therapy was initiated once the infection had already been established. The protection involving enhanced phagocytosis and then neutrophil mediated killing of infected cells was IgA isotype mediated, because treatment with an IgG version of 2E9 antibody was not effective in human IgG receptor CD64 transgenic mice. The Acr antigen specificity of IgA antibodies for protection in humans has been indicated by their elevated serum levels in latent tuberculosis unlike the lack of IgA antibodies against the virulence-associated MPT64 antigen. Our results represent the first evidence for potential translation of mucosal immunotherapy for the management of MDR-TB

    The effects of periodontal therapy on serum antibody (IgG) levels to plaque microorganisms *

    Full text link
    The influence of periodontal therapy on serum antibody titers to selected periodontal disease-associated microorganisms was assessed in 23 patients having chronic inflammatory periodontal disease (CIPD), The immunoglobulin G (IgG) titers were dÉtÉrmined by the micro ELISA technique in serum samples obtained prior to treatment; following a hygienic phase which included scaling, root planing, and oral hygiene instruction; following surgical treatment; and one year and two years following hygienic phase (maintenance phase). Considerable individual variability existed in the magnitude of immune response to specific bacterial preparations. Significant reductions in the mean antibody titers were seen to A. viscosus. S. sanguis. F. nucleatum, S, spuligena, B. gingivalis. B. interme-dius. B. melaninogeniem, T. vincentii , and T denticola by the end of the second year of maintenance. There was no consistent response to Capnucytophaga. When individual patient responses were examined. 6 of the 23 were found to have elevated titers to at least one of the microorganisms in the interval between pretreatment and the end of the hygienic phase; however, in all but one case, the titers at the end of the second year of maintenance were below pretreatment levels. Antibody levels to bacteria such as S. sanguis were modified during therapy. This would indicate that immune responses to microbes not generally considered to be “periodontal pathogens” may be modified by adjuvant activity associated with subgingival plaque or changes in the environment of the sulcus and that subsequent changes in titer do not necessarily reflect a role of that microorganism in the disease process.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75110/1/j.1600-051X.1988.tb02127.x.pd

    Immunodominant PstS1 antigen of mycobacterium tuberculosis is a potent biological response modifier for the treatment of bladder cancer

    Get PDF
    BACKGROUND: Bacillus Calmette Guérin (BCG)-immunotherapy has a well-documented and successful clinical history in the treatment of bladder cancer. However, regularly observed side effects, a certain degree of nonresponders and restriction to superficial cancers remain a major obstacle. Therefore, alternative treatment strategies are intensively being explored. We report a novel approach of using a well defined immunostimulatory component of Mycobacterium tuberculosis for the treatment of bladder cancer. The phosphate transport protein PstS1 which represents the phosphate binding component of a mycobacterial phosphate uptake system is known to be a potent immunostimulatory antigen of M. tuberculosis. This preclinical study was designed to test the potential of recombinant PstS1 to serve as a non-viable and defined immunotherapeutic agent for intravesical bladder cancer therapy. METHODS: Mononuclear cells (PBMCs) were isolated from human peripheral blood and stimulated with PstS1 for seven days. The activation of PBMCs was determined by chromium release assay, IFN-γ ELISA and measurement of lymphocyte proliferation. The potential of PstS1 to activate monocyte-derived human dendritic cells (DC) was determined by flow cytometric analysis of the marker molecules CD83 and CD86 as well as the release of the cytokines TNF-α and IL-12. Survival of presensitized and intravesically treated, tumor-bearing mice was analyzed by Kaplan-Meier curve and log rank test. Local and systemic immune response in PstS1-immunotherapy was investigated by anti-PstS1-specific ELISA, splenocyte proliferation assay and immunohistochemistry. RESULTS: Our in vitro experiments showed that PstS1 is able to stimulate cytotoxicity, IFN-γ release and proliferation of PBMCs. Further investigations showed the potential of PstS1 to activate monocyte-derived human dendritic cells (DC). In vivo studies in an orthotopic murine bladder cancer model demonstrated the therapeutic potential of intravesically applied PstS1. Immunohistochemical analysis and splenocyte restimulation assay revealed that local and systemic immune responses were triggered by intravesical PstS1-immunotherapy. CONCLUSION: Our results demonstrate profound in vitro activation of human immune cells by recombinant PstS1. In addition, intravesical PstS1 immunotherapy induced strong local and systemic immune responses together with substantial anti-tumor activity in a preclinical mouse model. Thus, we have identified recombinant PstS1 antigen as a potent immunotherapeutic drug for cancer therapy
    corecore