1,537 research outputs found

    The evolution of a supermassive retrograde binary embedded in an accretion disk

    Get PDF
    In this note we discuss the main results of a study of a massive binary with unequal mass ratio, q, embedded in an accretion disk, with its orbital rotation being opposed to that of the disk. When the mass ratio is sufficiently large, a gap opens in the disk, but the mechanism of gap formation is very different from the prograde case. Inward migration occurs on a timescale of t_ev ~ M_p/(dot M), where M_p is the mass of the less massive component (the perturber), and dot M is the accretion rate. When q<< 1, the accretion takes place mostly onto the more massive component, with the accretion rate onto the perturber being smaller than, or of order of, q^(1/3)M. However, this rate increases when supermassive binary black holes are considered and gravitational wave emission is important. We estimate a typical duration of time for which the accretion onto the perturber and gravitational waves could be detected

    Spontaneous time reversal symmetry breaking in the pseudogap state of high-Tc superconductors

    Full text link
    When matter undergoes a phase transition from one state to another, usually a change in symmetry is observed, as some of the symmetries exhibited are said to be spontaneously broken. The superconducting phase transition in the underdoped high-Tc superconductors is rather unusual, in that it is not a mean-field transition as other superconducting transitions are. Instead, it is observed that a pseudo-gap in the electronic excitation spectrum appears at temperatures T* higher than Tc, while phase coherence, and superconductivity, are established at Tc (Refs. 1, 2). One would then wish to understand if T* is just a crossover, controlled by fluctuations in order which will set in at the lower Tc (Refs. 3, 4), or whether some symmetry is spontaneously broken at T* (Refs. 5-10). Here, using angle-resolved photoemission with circularly polarized light, we find that, in the pseudogap state, left-circularly polarized photons give a different photocurrent than right-circularly polarized photons, and therefore the state below T* is rather unusual, in that it breaks time reversal symmetry11. This observation of a phase transition at T* provides the answer to a major mystery of the phase diagram of the cuprates. The appearance of the anomalies below T* must be related to the order parameter that sets in at this characteristic temperature .Comment: 11 pages, 4 figure

    Primordial Black Holes: sirens of the early Universe

    Full text link
    Primordial Black Holes (PBHs) are, typically light, black holes which can form in the early Universe. There are a number of formation mechanisms, including the collapse of large density perturbations, cosmic string loops and bubble collisions. The number of PBHs formed is tightly constrained by the consequences of their evaporation and their lensing and dynamical effects. Therefore PBHs are a powerful probe of the physics of the early Universe, in particular models of inflation. They are also a potential cold dark matter candidate.Comment: 21 pages. To be published in "Quantum Aspects of Black Holes", ed. X. Calmet (Springer, 2014

    Generation of Ultrastable Microwaves via Optical Frequency Division

    Full text link
    There has been increased interest in the use and manipulation of optical fields to address challenging problems that have traditionally been approached with microwave electronics. Some examples that benefit from the low transmission loss, agile modulation and large bandwidths accessible with coherent optical systems include signal distribution, arbitrary waveform generation, and novel imaging. We extend these advantages to demonstrate a microwave generator based on a high-Q optical resonator and a frequency comb functioning as an optical-to-microwave divider. This provides a 10 GHz electrical signal with fractional frequency instability <8e-16 at 1 s, a value comparable to that produced by the best microwave oscillators, but without the need for cryogenic temperatures. Such a low-noise source can benefit radar systems, improve the bandwidth and resolution of communications and digital sampling systems, and be valuable for large baseline interferometry, precision spectroscopy and the realization of atomic time

    Constraining parameter space in type-II two-Higgs doublet model in light of a 126 GeV Higgs boson

    Full text link
    We explore the implications of a 126 GeV Higgs boson indicated by the recent LHC results for two-Higgs doublet model (2HDM). Identifying the 126 GeV Higgs boson as either the lighter or heavier of CP even neutral Higgs bosons in 2HDM, we examine how the masses of Higgs fields and mixing parameters can be constrained by the theoretical conditions and experimental constraints. The theoretical conditions taken into account are the vacuum stability, perturbativity and unitarity required to be satisfied up to a cut-off scale. We also show how bounds on the masses of Higgs bosons and mixing parameters depend on the cut-off scale. In addition, we investigate whether the allowed regions of parameter space can accommodate particularly the enhanced di-photon signals, ZZ* and WW* decay modes of the Higgs boson, and examine the prediction of the signal strength of Z{\gamma} decay mode for the allowed regions of the parameter space.Comment: To be published in JHEP, 20 pages, 11 figures, Figures and results are updated for the recent LHC result

    Protein Pattern Formation

    Full text link
    Protein pattern formation is essential for the spatial organization of many intracellular processes like cell division, flagellum positioning, and chemotaxis. A prominent example of intracellular patterns are the oscillatory pole-to-pole oscillations of Min proteins in \textit{E. coli} whose biological function is to ensure precise cell division. Cell polarization, a prerequisite for processes such as stem cell differentiation and cell polarity in yeast, is also mediated by a diffusion-reaction process. More generally, these functional modules of cells serve as model systems for self-organization, one of the core principles of life. Under which conditions spatio-temporal patterns emerge, and how these patterns are regulated by biochemical and geometrical factors are major aspects of current research. Here we review recent theoretical and experimental advances in the field of intracellular pattern formation, focusing on general design principles and fundamental physical mechanisms.Comment: 17 pages, 14 figures, review articl

    PLEKHA7 Is an Adherens Junction Protein with a Tissue Distribution and Subcellular Localization Distinct from ZO-1 and E-Cadherin

    Get PDF
    The pleckstrin-homology-domain-containing protein PLEKHA7 was recently identified as a protein linking the E-cadherin-p120 ctn complex to the microtubule cytoskeleton. Here we characterize the expression, tissue distribution and subcellular localization of PLEKHA7 by immunoblotting, immunofluorescence microscopy, immunoelectron microscopy, and northern blotting in mammalian tissues. Anti-PLEKHA7 antibodies label the junctional regions of cultured kidney epithelial cells by immunofluorescence microscopy, and major polypeptides of Mr ∼135 kDa and ∼145 kDa by immunoblotting of lysates of cells and tissues. Two PLEKHA7 transcripts (∼5.5 kb and ∼6.5 kb) are detected in epithelial tissues. PLEKHA7 is detected at epithelial junctions in sections of kidney, liver, pancreas, intestine, retina, and cornea, and its tissue distribution and subcellular localization are distinct from ZO-1. For example, PLEKHA7 is not detected within kidney glomeruli. Similarly to E-cadherin, p120 ctn, β-catenin and α-catenin, PLEKHA7 is concentrated in the apical junctional belt, but unlike these adherens junction markers, and similarly to afadin, PLEKHA7 is not localized along the lateral region of polarized epithelial cells. Immunoelectron microscopy definitively establishes that PLEKHA7 is localized at the adherens junctions in colonic epithelial cells, at a mean distance of 28 nm from the plasma membrane. In summary, we show that PLEKHA7 is a cytoplasmic component of the epithelial adherens junction belt, with a subcellular localization and tissue distribution that is distinct from that of ZO-1 and most AJ proteins, and we provide the first description of its distribution and localization in several tissues
    corecore