1,915 research outputs found

    Light Curve Solutions of Eclipsing Binaries in SMC

    Full text link
    We propose a procedure for light-curve solution of eclipsing binary stars in the Small Magellanic Cloud for which photometric data have been obtained in the framework of the OGLE project as well as way of determination of the global stellar parameters on the basis of the obtained solutions, some empirical relations as well as the distance to the SMC. Several examples illustrate this procedure.Comment: 10 pages, 2 figures, accepte

    Near-infrared spectroscopy of candidate red supergiant stars in clusters

    Full text link
    Clear identifications of Galactic young stellar clusters farther than a few kpc from the Sun are rare, despite the large number of candidate clusters. We aim to improve the selection of candidate clusters rich in massive stars with a multiwavelength analysis of photometric Galactic data that range from optical to mid-infrared wavelengths. We present a photometric and spectroscopic analysis of five candidate stellar clusters, which were selected as overdensities with bright stars (Ks < 7 mag) in GLIMPSE and 2MASS images. A total of 48 infrared spectra were obtained. The combination of photometry and spectroscopy yielded six new red supergiant stars with masses from 10 Msun to 15 Msun. Two red supergiants are located at Galactic coordinates (l,b)=(16.7deg,-0.63deg) and at a distance of about ~3.9 kpc; four other red supergiants are members of a cluster at Galactic coordinates (l,b)=(49.3deg,+0.72deg) and at a distance of ~7.0 kpc. Spectroscopic analysis of the brightest stars of detected overdensities and studies of interstellar extinction along their line of sights are fundamental to distinguish regions of low extinction from actual stellar clusters. The census of young star clusters containing red supergiants is incomplete; in the existing all-sky near-infrared surveys, they can be identified as overdensities of bright stars with infrared color-magnitude diagrams characterized by gaps.Comment: 16 pages, 10 figures, accepted to A&A 201

    On the Relation Between Peak Luminosity and Parent Population of Type Ia Supernovae: A New Tool for Probing the Ages of Distant Galaxies

    Get PDF
    We study the properties of Type Ia Supernovae (SNe Ia) as functions of the radial distance from their host galaxy centers. Using a sample of 62 SNe Ia with reliable luminosity, reddening, and decline rate determinations, we find no significant radial gradients of SNe Ia peak absolute magnitudes or decline rates in elliptical+S0 galaxies, suggesting that the diversity of SN properties is not related to the metallicity of their progenitors. We do find that the range in brightness and light curve width of supernovae in spiral galaxies extends to brighter, broader values. These results are interpreted as support for an age, but not metallicity, related origin of the diversity in SNe Ia. If confirmed with a larger and more accurate sample of data, the age-luminosity relation would offer a new and powerful tool to probe the ages and age gradients of stellar populations in galaxies at redshift as high as z∌1−2z\sim1-2. The absence of significant radial gradients in the peak (B−V)0\rm (B-V)_0 and (V−I)0\rm (V-I)_0 colors of SNe Ia supports the redding correction method of Phillips et al (1999). We find no radial gradient in residuals from the SN Ia luminosity-width relation, suggesting that the relation is not affected by properties of the progenitor populations and supporting the reliability of cosmological results based upon the use of SNe Ia as distance indicators.Comment: 19 pages, incl. 3 tables & 3 figures; to appear in Nov 2000 issue of Ap

    The VMC survey - XIV : First results on the look-back time star formation rate tomography of the Small Magellanic Cloud

    Get PDF
    Date of Acceptance: 20/01/2015We analyse deep images from the VISTA survey of the Magellanic Clouds in the YJKs filters, covering 14 deg2 (10 tiles), split into 120 subregions, and comprising the main body and Wing of the Small Magellanic Cloud (SMC). We apply a colour-magnitude diagram reconstruction method that returns their best-fitting star formation rate SFR(t), age-metallicity relation (AMR), distance and mean reddening, together with 68 per cent confidence intervals. The distance data can be approximated by a plane tilted in the East-West direction with a mean inclination of 39°, although deviations of up to ±3 kpc suggest a distorted and warped disc. After assigning to every observed star a probability of belonging to a given age-metallicity interval, we build high-resolution population maps. These dramatically reveal the flocculent nature of the young star-forming regions and the nearly smooth features traced by older stellar generations. They document the formation of the SMC Wing at ages <0.2 Gyr and the peak of star formation in the SMC Bar at ~40 Myr. We clearly detect periods of enhanced star formation at 1.5 and 5 Gyr. The former is possibly related to a new feature found in the AMR, which suggests ingestion of metal-poor gas at ages slightly larger than 1 Gyr. The latter constitutes a major period of stellar mass formation. We confirm that the SFR(t) was moderately low at even older ages.Peer reviewe

    A Medium-Resolution Near-Infrared Spectral Library of Late Type Stars: I

    Full text link
    We present an empirical infrared spectral library of medium resolution (R~2000-3000) H (1.6 micron) and K (2.2 micron) band spectra of 218 red stars, spanning a range of [Fe/H] from ~-2.2 to ~+0.3. The sample includes Galactic disk stars, bulge stars from Baade's window, and red giants from Galactic globular clusters. We report the values of 19 indices covering 12 spectral features measured from the spectra in the library. Finally, we derive calibrations to estimate the effective temperature, and diagnostic relationships to determine the luminosity classes of individual stars from near-infrared spectra. This paper is part of a larger effort aimed at building a near-IR spectral library to be incorporated in population synthesis models, as well as, at testing synthetic stellar spectra.Comment: 34 pages, 12 figures; accepted for publication at ApJS; the spectra are available from the authors upon reques

    The VMC Survey -- XXXIV. Morphology of Stellar Populations in the Magellanic Clouds

    Get PDF
    The Magellanic Clouds are nearby dwarf irregular galaxies whose morphologies show different properties when traced by different stellar populations, making them an important laboratory for studying galaxy morphologies. We study the morphology of the Magellanic Clouds using data from the VISTA survey of the Magellanic Clouds system (VMC). We used about 1010 and 2.52.5 million sources across an area of ∌105\sim105 deg2^2 and ∌42\sim42 deg2^2 towards the Large and Small Magellanic Cloud (LMC and SMC), respectively. We estimated median ages of stellar populations occupying different regions of the near-infrared (J−Ks,KsJ-K_\mathrm{s}, K_\mathrm{s}) colour-magnitude diagram. Morphological maps were produced and detailed features in the central regions were characterised for the first time with bins corresponding to a spatial resolution of 0.130.13 kpc (LMC) and 0.160.16 kpc (SMC). In the LMC, we find that main sequence stars show coherent structures that grow with age and trace the multiple spiral arms of the galaxy, star forming regions become dimmer as we progress in age, while supergiant stars are centrally concentrated. Intermediate-age stars, despite tracing a regular and symmetrical morphology, show central clumps and hints of spiral arms. In the SMC, young main sequence stars depict a broken bar. Intermediate-age populations show signatures of elongation towards the Magellanic Bridge that can be attributed to the LMC-SMC interaction ∌200\sim200 Myr ago. They also show irregular central features suggesting that the inner SMC has also been influenced by tidal interactions.Comment: Accepted for publication in MNRAS, 20 pages, 12 figures and 2 table

    Common Proper Motion Search for Faint Companions Around Early-Type Field Stars - Progress Report

    Get PDF
    The multiplicity of early-type stars is still not well established. The derived binary fraction is different for individual star forming regions, suggesting a connection with the age and the environment conditions. The few studies that have investigated this connection do not provide conclusive results. To fill in this gap, we started the first detailed adaptive-optic-assisted imaging survey of early-type field stars to derive their multiplicity in a homogeneous way. The sample has been extracted from the Hipparcos Catalog and consists of 341 BA-type stars within ~300 pc from the Sun. We report the current status of the survey and describe a Monte-Carlo simulation that estimates the completeness of our companion detection.Comment: 4 pages, 1 figure, conference proc. Syros 200

    Massive Stars In The W33 Giant Molecular Complex

    Get PDF
    Rich in H II regions, giant molecular clouds are natural laboratories to study massive stars and sequential star formation. The Galactic star-forming complex W33 is located at = ∌ ◩ l 12.8 and at a distance of 2.4 kpc and has a size of ≈10 pc and a total mass of ≈(0.8−8.0) × 105 M⊙. The integrated radio and IR luminosity of W33—when combined with the direct detection of methanol masers, the protostellar object W33A, and the protocluster embedded within the radio source W33 main—mark the region as a site of vigorous ongoing star formation. In order to assess the long-term star formation history, we performed an infrared spectroscopic search for massive stars, detecting for the first time 14 early-type stars, including one WN6 star and four O4–7 stars. The distribution of spectral types suggests that this population formed during the past ∌2–4 Myr, while the absence of red supergiants precludes extensive star formation at ages 6–30 Myr. This activity appears distributed throughout the region and does not appear to have yielded the dense stellar clusters that characterize other star-forming complexes such as Carina and G305. Instead, we anticipate that W33 will eventually evolve into a loose stellar aggregate, with Cyg OB2 serving as a useful, albeit richer and more massive, comparator. Given recent distance estimates, and despite a remarkably similar stellar population, the rich cluster Cl 1813–178 located on the northwest edge of W33 does not appear to be physically associated with W33
    • 

    corecore