9 research outputs found

    Flux of Atmospheric Neutrinos

    Get PDF
    Atmospheric neutrinos produced by cosmic-ray interactions in the atmosphere are of interest for several reasons. As a beam for studies of neutrino oscillations they cover a range of parameter space hitherto unexplored by accelerator neutrino beams. The atmospheric neutrinos also constitute an important background and calibration beam for neutrino astronomy and for the search for proton decay and other rare processes. Here we review the literature on calculations of atmospheric neutrinos over the full range of energy, but with particular attention to the aspects important for neutrino oscillations. Our goal is to assess how well the properties of atmospheric neutrinos are known at present.Comment: 68 pages, 26 figures. With permission from the Annual Review of Nuclear & Particle Science. Final version of this material is scheduled to appear in the Annual Review of Nuclear & Particle Science Vol. 52, to be published in December 2002 by Annual Reviews (http://annualreviews.org

    On the nature of the vestibular control of arm-reaching movements during whole-body rotations.

    No full text
    International audienceRecent studies report efficient vestibular control of goal-directed arm movements during body motion. This contribution tested whether this control relies (a) on an updating process in which vestibular signals are used to update the perceived egocentric position of surrounding objects when body orientation changes, or (b) on a sensorimotor process, i.e. a transfer function between vestibular input and the arm motor output that preserves hand trajectory in space despite body rotation. Both processes were separately and specifically adapted. We then compared the respective influences of the adapted processes on the vestibular control of arm-reaching movements. The rationale was that if a given process underlies a given behavior, any adaptive modification of this process should give rise to observable modification of the behavior. The updating adaptation adapted the matching between vestibular input and perceived body displacement in the surrounding world. The sensorimotor adaptation adapted the matching between vestibular input and the arm motor output necessary to keep the hand fixed in space during body rotation. Only the sensorimotor adaptation significantly altered the vestibular control of arm-reaching movements. Our results therefore suggest that during passive self-motion, the vestibular control of arm-reaching movements essentially derives from a sensorimotor process by which arm motor output is modified on-line to preserve hand trajectory in space despite body displacement. In contrast, the updating process maintaining up-to-date the egocentric representation of visual space seems to contribute little to generating the required arm compensation during body rotations

    High precision cosmic ray physics with AMS-02 on the International Space Station

    No full text

    Biochemical Effects of Drugs Acting on the Central Nervous System

    No full text
    corecore