13 research outputs found

    Switching between Hydrogenation and Olefin Transposition Catalysis via Silencing NH Cooperativity in Mn(I) Pincer Complexes

    Get PDF
    While Mn-catalyzed (de)hydrogenation of carbonyl derivatives has been well established, the reactivity of Mn hydrides with olefins remains very rare. Herein, we report a Mn(I) pincer complex that effectively promotes site-controlled transposition of olefins. This reactivity is shown to emerge once the N–H functionality within the Mn/NH bifunctional complex is suppressed by alkylation. While detrimental for carbonyl (de)hydrogenation, such masking of the cooperative N–H functionality allows for the highly efficient conversion of a wide range of allylarenes to higher-value 1-propenybenzenes in near-quantitative yield with excellent stereoselectivities. The reactivity toward a single positional isomerization was also retained for long-chain alkenes, resulting in the highly regioselective formation of 2-alkenes, which are less thermodynamically stable compared to other possible isomerization products. The detailed mechanistic analysis of the reaction between the activated Mn catalyst and olefins points to catalysis operating via a metal–alkyl mechanism─one of the three conventional transposition mechanisms previously unknown in Mn complexes

    Novel hydrogen clathrate hydrate

    Full text link
    We report a new hydrogen clathrate hydrate synthesized at 1.2 GPa and 298 K documented by single-crystal X-ray diffraction, Raman spectroscopy, and first-principles calculations. The oxygen sublattice of the new clathrate hydrate matches that of ice II, while hydrogen molecules are in the ring cavities, which results in the trigonal R3c or R-3c space group (proton ordered or disordered, respectively) and the composition of (H2O)6H2. Raman spectroscopy and theoretical calculations reveal a hydrogen disordered nature of the new phase C1', distinct from the well-known ordered C1 clathrate, to which this new structure transforms upon compression and/or cooling. This new clathrate phase can be viewed as a realization of a disordered ice II, unobserved before, in contrast to all other ordered ice structures.Comment: 9 pages, 4 figures, 1 table; Supplementary materials: Materials and Methods, Supplementary Figures S1-S8, Tables S1-S3, and Bibliography with 18 Reference

    Revisiting van der Waals Radii: From Comprehensive Structural Analysis to Knowledge-Based Classification of Interatomic Contacts

    No full text
    Weak noncovalent interactions are responsible for structure and properties of almost all supramolecular systems, such as nucleic acids, enzymes, and pharmaceutical crystals. However, the analysis of their significance and structural role is not straightforward and commonly requires model studies. Herein, we describe an efficient and universal approach for the analysis of noncovalent interactions and determination of van der Waals radii using the line-of-sight (LoS) concept. The LoS allows to unambiguously identify and classify the “direct” interatomic contacts in complex molecular systems. This approach not only provides an improved theoretical base to molecular “sizes” but also enables the quantitative analysis of specificity, anisotropy, and steric effects of intermolecular interactions.ChemE/AlgemeenChemE/Inorganic Systems Engineerin

    Local-structure effects on 31P NMR chemical shift tensors in solid state

    No full text
    The effect of the local structure on the P-31 NMR chemical shift tensor (CST) has been studied experimentally and simulated theoretically using the density functional theory gauge-independent-atomic-orbital approach. It has been shown that the dominating impact comes from a small number of noncovalent interactions between the phosphorus-containing group under question and the atoms of adjacent molecules. These interactions can be unambiguously identified using the Bader analysis of the electronic density. A robust and computationally effective approach designed to attribute a given experimental P-31 CST to a certain local morphology has been elaborated. This approach can be useful in studies of surfaces, complex molecular systems, and amorphous materials. Published under license by AIP Publishing

    Basic Promotors Impact Thermodynamics and Catalyst Speciation in Homogeneous Carbonyl Hydrogenation

    Get PDF
    Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role of reaction promotors is often discussed in view of their chemical reactivity, we demonstrate that they can be involved in catalysis indirectly. In particular, we demonstrate that promotors can adjust the thermodynamics of key transformations in homogeneous hydrogenation catalysis and enable reactions that would be unfavorable otherwise. We identified this phenomenon in a set of well-established and new Mn pincer catalysts that suffer from persistent product inhibition in ester hydrogenation. Although alkoxide base additives do not directly participate in inhibitory transformations, they can affect the equilibrium constants of these processes. Experimentally, we confirm that by varying the base promotor concentration one can control catalyst speciation and inflict substantial changes to the standard free energies of the key steps in the catalytic cycle. Despite the fact that the latter are universally assumed to be constant, we demonstrate that reaction thermodynamics and catalyst state are subject to external control. These results suggest that reaction promotors can be viewed as an integral component of the reaction medium, on its own capable of improving the catalytic performance and reshaping the seemingly rigid thermodynamic landscape of the catalytic transformation

    Switching Between Hydrogenation and Olefin Transposition Catalysis via Silencing NH Cooperativity in Mn(I) pincer complexes

    No full text
    While Mn-catalyzed (de)hydrogenation of carbonyl derivatives has been well established, the reactivity of Mn hydrides with olefins remains very rare. Herein, we report a Mn(I) pincer complex that effectively promotes site-controlled transposition of olefins. This reactivity is shown to emerge once the N–H functionality within the Mn/NH bifunctional complex is suppressed by alkylation. While detrimental for carbonyl (de)hydrogenation, such masking of the cooperative N–H functionality allows for the highly efficient conversion of a wide range of allylarenes to higher-value 1-propenybenzenes in near-quantitative yield with excellent stereoselectivities. The reactivity toward a single positional isomerization was also retained for long-chain alkenes, resulting in the highly regioselective formation of 2-alkenes, which are less thermodynamically stable compared to other possible isomerization products. The detailed mechanistic analysis of the reaction between the activated Mn catalyst and olefins points to catalysis operating via a metal–alkyl mechanism─one of the three conventional transposition mechanisms previously unknown in Mn complexesChemE/Inorganic Systems EngineeringChemE/Algemee

    Inhibiting Low-Frequency Vibrations Explains Exceptionally High Electron Mobility in 2,5-Difluoro-7,7,8,8-tetracyanoquinodimethane (F<sub>2</sub>‑TCNQ) Single Crystals

    No full text
    Organic electronics requires materials with high charge mobility. Despite decades of intensive research, charge transport in high-mobility organic semiconductors has not been well understood. In this Letter, we address the physical mechanism underlying the exceptionally high band-like electron mobility in F<sub>2</sub>-TCNQ (2,5-difluoro-7,7,8,8-tetracyanoquinodimethane) single crystals among a crystal family of similar compounds F<sub><i>n</i></sub>-TCNQ (<i>n</i> = 0, 2, 4) using a combined experimental and theoretical approach. While electron transfer integrals and reorganization energies did not show outstanding features for F<sub>2</sub>-TCNQ, Raman spectroscopy and solid-state DFT indicated that the frequency of the lowest vibrational mode is nearly twice higher in the F<sub>2</sub>-TCNQ crystal than in TCNQ and F<sub>4</sub>-TCNQ. This phenomenon is explained by the specific packing motif of F<sub>2</sub>-TCNQ with only one molecule per primitive cell so that electron–phonon interaction decreases and the electron mobility increases. We anticipate that our findings will encourage investigators for the search and design of organic semiconductors with one molecule per primitive cell and/or the poor low-frequency vibrational spectrum

    Phosphine Ligand Hemilability as a Route Towards Robust and Efficient Hydrogenation with Mn(I) Complexes

    No full text
    The foremost requirement for any catalyst to beimplemented in practice is its efficiency and stability. Thisrequirement is particularly valid for manganese hydrogenation catalysts representing more sustainable alternatives to conventional noble metal-based systems. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst featuring phosphine arm hemilability, which gives rise to the excellent productivity (TOF° up to 41 000 h-1) and outstanding stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes, and esters at the catalyst loadings as low as 5-200 ppm. Our analysis points to the crucial role of the phosphine hemilability for the catalyst activation step and the stability of the reactive species under the catalytic conditions. Unprecedented inmanganese hydrogenation catalysis, this unusual coordination behavior might have general utility for improving catalysis by Mn complexes and bringing them yet another competitive advantage.</div

    Breaking Linear Scaling Relationships with Secondary Interactions in Confined Space: A Case Study of Methane Oxidation by Fe/ZSM-5 Zeolite

    No full text
    Linear energy scaling laws connect the kinetic and thermodynamic parameters of key elementary steps for heterogeneously catalyzed reactions over defined active sites on open surfaces. Such scaling laws provide a framework for a rapid computational activity screening of families of catalysts, but they also effectively impose a fundamental limit on the theoretically attainable activity. Understanding the limits of applicability of the linear scaling laws is therefore crucial for the development of predictive models in catalysis. In this work, we computationally investigate the role of secondary effects of the active site environment on the reactivity of defined Fe complexes in ZSM-5 zeolite toward methane oxofunctionalization. The computed C-H activation barriers over Fe-sites at different locations inside the zeolite pores generally follow the associated reaction enthalpies and the hydrogen affinities of the active site, reflecting the O-H bond strength. Nevertheless, despite the close similarity of the geometries and intrinsic reactivities of the considered active complexes, substantial deviations from these linear scaling relations are apparent from the DFT calculations. We identify three major factors behind these deviations, namely, (1) confinement effects due to the zeolite micropores, (2) coordinative flexibility, and (3) multifunctionality of the active site. The latter two phenomena impact the mechanism of the catalytic reaction by providing a cooperative reaction channel for the substrate activation or by enabling the stabilization of the intrazeolite complex along the reaction path. These computational findings point to the need for the formulation of multidimensional property-Activity relationships accounting for both the intrinsic chemistry of the reactive ensembles and secondary effects due to their environmental and dynamic characteristics.ChemE/Catalysis EngineeringChemE/Inorganic Systems EngineeringChemE/Algemee

    Robust and efficient hydrogenation of carbonyl compounds catalysed by mixed donor Mn(I) pincer complexes

    Get PDF
    Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h−1) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5–200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt3, dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation
    corecore