19 research outputs found

    Recent Beam-Beam Effects at VEPP-2000 and VEPP-4M

    Full text link
    Budker INP hosts two e+e- colliders, VEPP-4M operating in the beam energy range of 1-5.5 GeV and the low-energy machine VEPP-2000, collecting data at 160-1000 MeV per beam. The latter uses a novel concept of round colliding beams. The paper presents an overview of observed beam-beam effects and obtained luminosities.Comment: Presented at the ICFA Mini-Workshop on Beam-Beam in Hadron Colliders, CERN, Geneva, Switzerland, 18-22 March 201

    FEL stochastic spectroscopy revealing silicon bond softening dynamics

    Full text link
    Time-resolved X-ray Emission/Absorption Spectroscopy (Tr-XES/XAS) is an informative experimental tool sensitive to electronic dynamics in materials, widely exploited in diverse research fields. Typically, Tr-XES/XAS requires X-ray pulses with both a narrow bandwidth and sub-picosecond pulse duration, a combination that in principle finds its optimum with Fourier transform-limited pulses. In this work, we explore an alternative xperimental approach, capable of simultaneously retrieving information about unoccupied (XAS) and occupied (XES) states from the stochastic fluctuations of broadband extreme ultraviolet pulses of a free-electron laser. We used this method, in combination with singular value decomposition and Tikhonov regularization procedures, to determine the XAS/XES response from a crystalline silicon sample at the L2,3-edge, with an energy resolution of a few tens of meV. Finally, we combined this spectroscopic method with a pump-probe approach to measure structural and electronic dynamics of a silicon membrane. Tr-XAS/XES data obtained after photoexcitation with an optical laser pulse at 390 nm allowed us to observe perturbations of the band structure, which are compatible with the formation of the predicted precursor state of a non-thermal solid-liquid phase transition associated with a bond softening phenomenon

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    THE EFFECT OF THE SOMATOSTATIN ANALOGUE OCTREOTIDE ON EXPERIMENTAL INTESTINAL OBSTRUCTION IN RATS

    No full text
    Background: Somatostatin has an inhibitory effect on the endocrine and exocrine secretions of the gut. It may have a beneficial effect in the conservative treatment of intestinal obstruction. The aim of the present study is to investigate the effect of octreotide in mechanical intestinal obstruction in rats. Method: Intestinal obstruction was induced in rats by ligation of a segment of the distal ileum. Animals were treated with the somatostatin analogue octreotide (n=16), or saline (n=16). Eight rats were operated but their intestine was not ligated (n=8) serving as sham controls. Forty eight hours after the operation, the animals were operated upon again and blood samples from the femoral vein were tested for electrolytes, urea, glucose, lactic acid, amylase, ph and bicarbonate. Portal vein blood samples were also obtained and tested for lactic acid and amylase. Results: Intestinal obstruction resulted, after 48 hours, in severe dilatation of bowel loops. A significant increase in plasma levels of urea, amylase and lactic acid was observed. Plasma pH decreased. In blood samples from the portal vein, a significant increase in lactic acid was observed, indicating metabolic acidosis, probably secondary to bowel ischemia. Octreotide treatment, resulted in less acidosis, with concomitant lower urea and lactic acid levels in the plasma and especially in the portal vein. Conclusion: Octreotide treatment may have a beneficial effect in the conservative treatment of selected cases of intestinal obstruction

    Design of Beam Optics for the FCC-ee Collider Ring

    No full text
    A design of beam optics will be presented for the FCC-ee double-ring collider. The main characteristics are 45 to 175 GeV beam energy, 100 km circumference with two IPs/ring, 30 mrad crossing angle at the IP, crab-waist scheme with local chromaticity correction system, and "tapering" of the magnets along with the local beam energy. An asymmetric layout near the interaction region suppresses the critical energy of synchrotron radiation toward the detector at the IP less than 100 keV, while keeping the geometry as close as to the FCC-hh beam line. A sufficient transverse/longitudinal dynamic aperture is obtained to assure the lifetime with beamstrahlung and top-up injection. The synchrotron radiation in all magnets, the IP solenoid and its compensation, nonlinearity of the final quadrupoles are taken into account

    CMD-3 Overview

    No full text
    The CMD-3 detector is installed at the VEPP-2000 e+e− collider at BINP (Novosibirsk, Russia). It is a general-purpose detector, equipped with a tracking system, two crystal (CSI and BGO) calorimeters, liquid Xe calorimeter, TOF and muon systems. The main goal of experiments at CMD-3 is a study of exclusive modes of e+e−→ hadrons at energies s≤ \sqrt s \le GeV. In particular, these results provide an important input for calculation of the hadronic contribution to the muon anomalous magnetic moment. The first round of data taking was performed in 2011–2013, when about 60 1/pb were taken in the center-of-mass (c.m.) energy range from 0.32 to 2.0 GeV. Here we present a survey of results of data analysis. Between 2013 and 2016 the collider and the detector were upgraded. The data taking resumed by the end of 2016. In the first run after the upgrade about 50 1/pb were collected at the energy range between 1.28 and 2.007 GeV. We discuss the upgrade and the first preliminary results from the new data

    CMD-3 Overview

    Get PDF
    The CMD-3 detector is installed at the VEPP-2000 e+e− collider at BINP (Novosibirsk, Russia). It is a general-purpose detector, equipped with a tracking system, two crystal (CSI and BGO) calorimeters, liquid Xe calorimeter, TOF and muon systems. The main goal of experiments at CMD-3 is a study of exclusive modes of e+e−→ hadrons at energies s≤2s≤ \sqrt s \le GeV. In particular, these results provide an important input for calculation of the hadronic contribution to the muon anomalous magnetic moment. The first round of data taking was performed in 2011–2013, when about 60 1/pb were taken in the center-of-mass (c.m.) energy range from 0.32 to 2.0 GeV. Here we present a survey of results of data analysis. Between 2013 and 2016 the collider and the detector were upgraded. The data taking resumed by the end of 2016. In the first run after the upgrade about 50 1/pb were collected at the energy range between 1.28 and 2.007 GeV. We discuss the upgrade and the first preliminary results from the new data
    corecore