87 research outputs found

    Modelling of photonic components based on ÷(3)nonlinear photonic crystals

    Get PDF
    En esta tesis se llevó a cabo un estudio de diversas propiedades de los cristales fotónicos 1D y 2D no lineales de tercer orden y de cómo se pueden aplicar dichas propiedades al desarrollo de dispositivos totalmente ópticos (por ejemplo, limitadores y conmutadores, compuertas lógicas, transistores ópticos, etc.). Se propuso una aproximación numérica para calcular las características básicas de los cristales fotónicos no lineales como, por ejemplo, el diagrama de bandas o la transmisión. La aproximación numérica presentada en la tesis tiene ciertas ventajas útiles para cualquiera que diseñe dispositivos ópticos basados en cristales fotónicos no lineales. El sofware desarrollado a base de esta aproximación numérica ha permitido diseñar y simular numéricamente un conmutador totalmente óptico cuyas prestaciones son superiores a las de dispositivos optoelectrónicos convencionales.This dissertation represents a summary of a study of different properties of 1D and 2D third-order nonlinear photonic crystals. It is shown how these properties can be utilized to develop various all-optical devices (e.g. optical limiters and switches, logical gates, optical transistors, etc.) In the dissertation, a novel numerical approximation has been proposed for analyzing the basic characteristics of the nonlinear photonic crystals like dispersion characteristics or transmittance curves. This numerical approximation possesses some important advantages useful in designing all-optical devices based on nonlinear photonic crystals. The software based on its algorithm has allowed to design and simulate a high-production all-optical switching device

    Broadband light coupling to dielectric slot waveguides with tapered plasmonic nanoantennas

    Full text link
    We propose and theoretically verify an efficient mechanism of broadband coupling between incident light and on-chip dielectric slot waveguide by employing a tapered plasmonic nanoantenna. Nanoantenna receives free space radiation and couples it to a dielectric slot waveguide with the efficiency of up to 20% in a broad spectral range, having a small footprint as compared with the currently used narrowband dielectric grating couplers. We argue that the frequency selective properties of such nanoantennas also allow for using them as ultrasmall on-chip multiplexer/demultiplexer devices

    Tuneable plasmonics enabled by capillary oscillations of liquid-metal nanodroplets

    Get PDF
    Plasmonics allows manipulating light at the nanoscale, but has limitations due to the static nature of nanostructures and lack of tuneability. We propose and theoretically analyse a room-temperature liquid-metal nanodroplet that changes its shape, and therefore tunes the plasmon resonance frequency, due to capillary oscillations. We show the possibility to tune the capillary oscillation frequency of the nanodroplet and to drive the oscillations electrically or mechanically. Employed as a tuneable nanoantenna, the nanodroplet may find applications in sensors, imaging, microscopy, and medicine

    Transverse magneto-optical Kerr effect in subwavelength dielectric gratings

    Full text link
    We demonstrate theoretically a large transverse magneto-optical Kerr effect (TMOKE) in subwavelength gratings consisting of alternating magneto-insulating and nonmagnetic dielectric nanostripes. The reflectivity of the grating reaches 96%96\% at the frequencies corresponding to the maximum of the TMOKE response. The combination of a large TMOKE response and high reflectivity is important for applications in 33D imaging, magneto-optical data storage, and magnonics

    Magnetism-Inspired Quantum-Mechanical Model of Gender Fluidity

    Full text link
    Quantum-mechanical models of human cognition, opinion formation and decision-making have changed the way we understand and predict human behaviour in many practical situations, including political elections, financial decisions and international affairs. Yet, at present, such models overlook certain essential social aspects of human behaviour and self-identification. In this paper, we introduce a magnetism-inspired quantum-mechanical model of gender fluidity, a concept that challenges social norms across the globe. Addressing a number of independent suggestions made by members of the general public concerning a potential analogy between quantum superposition and non-binary self-identification, we explore new territories, demonstrating that physic of magnetism can help explain gender fluidity and similar social phenomena better than the traditional quantum-mechanical models of human cognition and perception. We anticipate that the proposed model can be used to analyse experimental datasets aimed to develop sexual orientation and gender identity legal definitions as well as to create artificial intelligence systems that can sensibly identify both binary and non-binary genders
    corecore