100 research outputs found

    Features of the synthesis of nanocollo id oxides by laser ablation of bulk metal targets in solutions

    Get PDF
    Laser ablation of bulk targets in a fluid — a promising new method for the synthesis of "pure" nanocolloids. Nanocrystalline materials produced by laser ablation are widely used in biology, medicine, and catalysis. High local temperature during ablation and large surface area of the particles promote chemical reactions and the formation of a complex composition of nanoparticles. In this paper the characteristics of the process of ablation and the obtaining of nanoparticles in a liquid by laser ablation of active materials (Zn, Ce, Ti, Si) were studied. Ways of increasing the productivity of laser ablation were discussed. Characterization of nanocolloids and nanocrystalline powders were performed. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Development of sers substrates based on nanoparticles obtained by pulsed laser ablation

    Get PDF
    SERS spectroscopy is an effective method for the determination of organic and biological compounds, which finds its place in many areas of human life: the analysis of works of art and food 24 YOUNG SCIENTISTS SESSION SESSION Y products, the identification of drugs and drugs, the study of biological structures, incl. at the cellular level. The creation of simple and effective SERS substrates is an urgent task in the development of this method. This paper presents the results of a study of SERS substrates based on gold nanoparticles (NPs). Gold NPs were obtained by pulsed laser ablation of an Au metal target in alcohol using a Nd:YAG laser (1064 nm, 7 ns, 150 mJ). The resulting colloidal solution was applied onto glass substrates by the drop method, varying the number of layers. The SERS characteristics were studied using a model dye rhodamine 6G using Renishaw inVia Basis Raman microscope. The samples were excited in the region of surface plasmon resonance of gold by laser radiation of 532 nm. The results of the study showed that with an increase in the number of deposited layers up to 5, the intensity of the Raman scattering of the dye increases linearly. With a further increase in the number of layers, the signal saturates. This data correlates with SEM data. At the beginning, an increase in the packing density of NPs in the plane of the substrate is observed. Accordingly, the number of "hot spots" increases, which contribute to the amplification of the signal. Further, the homogeneity of the NP layer deteriorates, and large bulk agglomerates appear. Thus, we have developed a simple method for obtaining SERS substrates, which made it possible to increase the signal intensity up to three orders of magnitude

    Structure and optical properties of nanoparticles obtained by pulsed laser ablation of copper in gases

    Get PDF
    Nano-powders of different composition and structure were obtained by nanosecond pulsed laser ablation (Nd:YAG laser, 7 ns, 1064 nm, 20 Hz, 200 mJ) of a metallic copper target in a simple flow reactor at atmospheric pressure. The crystal structure, nanoparticles’ shape, and surface morphology were shown to depend on the gaseous media used (Air, Ar, N2, CO2). CuO nanopowders with a specific surface area 50 m2/g were synthesized by pulsed laser ablation in carbon dioxide and after annealing in air. The optical properties of the obtained powders were also investigated

    Metal Oxide Nanoparticle Preparation by Pulsed Laser Ablation of Metallic Targets in Liquid

    Get PDF
    The basic mechanisms of pulsed laser ablation in liquids (PLAL) as a method for the synthesis of nanoparticles (NPs) were considered. Physical and chemical processes occurring during the PLAL that determine the formation, composition and structure of the nanoparticles obtained are described. The influence of the composition and properties of the target material, the solvent and the characteristics of the laser irradiation on the efficiency of the synthesis of nanoparticles is discussed. Separately, an influence of the absorption and scattering (including nonlinear) of laser radiation in the dispersion of nanoparticles on the primary synthetic processes and secondary transformations inside the colloidal solution is examined. The specificity of the characterization of the colloidal solutions of oxide particles produced by PLAL is highlighted. The most promising practical applications of nanomaterials obtained are identified and the examples of their successful use in catalytic research and biomedicine are provided

    Visualization of nanoconstructions with DNA-Aptamers for targeted molecules binding on the surface of screen-printed electrodes

    Get PDF
    Nanoconstructions of gold nanoparticles (NPs) obtained via pulsed laser ablation in liquid with DNA-aptamer specific to protein tumor marker were visualized on the surface of screen-printed electrode using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). AuNPs/aptamer nanoconstuctions distribution on the solid surface was studied. More uniform coverage of the carbon electrode surface with the nanoconstuctions was showed in comparison with DNA-aptamer alone on the golden electrode surface. Targeted binding of the tumor marker molecules with the AuNPs/DNA-aptamer nanoconstuctions was approved

    Development of an automated prototype of THz filter based on magnetic fluids

    Get PDF
    Many new investigation approaches or techniques that rely on THz radiation are emerging today. It requires the development of devices for controlling THz radiation characteristics intensity, polarization, spectral properties, etc. One of the promising approaches to the implementation of such devices is the use of ferromagnetic fluids. Earlier, the efficient operation of polarizers and non selective THz attenuators based on ferromagnetic liquids was demonstrated. The liquids used consisted of 5BDSR alloy particles obtained by the mechanical synthesis in a planetary mill or Fe particles obtained by the electric explosion, dispersed in synthetic engine oil. Magnetic fluids were controlled using an external magnetic field generated by Helmholtz coils. In this study, we propose a prototype of a THz filter based on previously developed ferromagnetic fluids. Filter consists of a quartz or polymer cuvette with a magnetic fluid, several Helmholtz coils and a control circuit. This device allows one to orient the magnetic particles and to create ordered structures in the form of extended clusters. As a result, physical properties of electromagnets were optimized for effective controlling of particle clusters; the control process itself was automated. Spectral properties in the THz range are studied for various filter states. For reliable continuous operations, the device was supplemented with a homogenization system, based on mechanical mixing or sonication. The developed device can be used as a polarizer or an attenuator for polarized radiation in the range of 0.3-3 THz

    Nanoparticles of Metals Oxides Preparation and Characterization

    Get PDF
    Abstract -Water dispersions of four metal oxides nanoparticles were synthesized by pulsed laser ablation of metallic targets (Ce, Cu, Ti, Zn) in water. The fundamental harmonic of nanosecond Nd:YAG laser was used. Nanocrystalline powders of oxides were obtained from the dispersions. The composition and structure of the materials obtained were investigated. The average size of the crystallites was found to be 10-20 nm. Cubic CeO2 and Cu2O, wurtzite-type ZnO and anatase/brookite mixture of TiO2 were identified in products. CeO2 was obtained from metallic Ce target for the first time. As prepared nanostructured semiconductors can be used in catalysis and photocatalysis, sunscreen technology, in biomedicine, and as antibacterial agents

    Hydrogen sensors based on In2O3 thin films with bimetallic Pt/Pd catalysts on the surface and tin and dysprosium impuri-ties in the bulk

    Get PDF
    This paper presents the results of studying the characteristics of hydrogen sensors based on thin In2O3 films modified with tin and dysprosium with dispersed double Pt/Pd catalysts deposited on the surface. To control the content of Sn and Dy in the films, an original technology was developed, and ceramic targets were fabricated from powders of the In–Dy–O, Dy–Sn–O, and In–Dy–Sn–O systems synthesized by the sol–gel method. Films of complex composition were obtained by RF magnetron sputtering of the corresponding targets. Structural features of the obtained thin films were studied by Raman spectroscopy. It is shown that various combinations of tin and dysprosium concentrations, as well as the presence of Pt/Pd catalysts on the surface, have a significant effect on the defectiveness of the films and the density of oxygen adsorption centers. As a result, the resistance of sensors in pure air (R0), the activation energies of the temperature dependences of R0, the bending of the energy bands at the grain boundaries of the semiconductor, and the responses to the action of hydrogen in the concentration range of 20–25,000 ppm change. A unique feature of Pt/Pd/ In2O3: Sn (0.5 at%), Dy (4.95 at%) films is their high sensitivity at 20–100 ppm and the absence of signal saturation in the region of high hydrogen concentrations of 5000–25,000 ppm, allowing them to be used to detect H2 in a wide range of concentrations
    corecore