7 research outputs found

    Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells

    No full text
    The effect of electron- and hole-selective contacts in the final cell performance of hybrid lead halide perovskite, CH3NH3PbI3, solar cells has been systematically analyzed by impedance spectroscopy. Complete cells with compact TiO2 and spiro-OMeTAD as electron- and hole-selective contacts have been compared with incomplete cells without one or both selective contacts to highlight the specific role of each contact. It has been described how selective contacts contribute to enhance the cell FF and how the hole-selective contact is mainly responsible for the high Voc in this kind of device. We have determined that the recombination rate is mainly governed by the selective contacts. This fact has important implication for the future optimization of perovskite solar cells. Finally, we have developed a method to analyze the results obtained, and it has been applied for three different electron-selecting materials: TiO2, ZnO, and CdS

    Jet and underlying event properties as a function of charged-particle multiplicity in proton–proton collisions at √s = 7 TeV

    No full text
    Abstract Characteristics of multi-particle production in proton-proton collisions at √s = 7 TeV are studied as a function of the charged-particle multiplicity, N ch. The produced particles are separated into two classes: those belonging to jets and those belonging to the underlying event. Charged particles are measured with pseudorapidity |η|0.25 GeV/c. Jets are reconstructed from charged-particles only and required to have pT>5 GeV/c. The distributions of jet pT, average pT of charged particles belonging to the underlying event or to jets, jet rates, and jet shapes are presented as functions of Nch and compared to the predictions of the pythia and herwig event generators. Predictions without multi-parton interactions fail completely to describe the Nch-dependence observed in the data. For increasing Nch, pythia systematically predicts higher jet rates and harder pT spectra than seen in the data, whereas herwig shows the opposite trends. At the highest multiplicity, the data–model agreement is worse for most observables, indicating the need for further tuning and/or new model ingredients
    corecore