583 research outputs found

    UML to XML-Schema Transformation: a Case Study in Managing Alternative Model Transformations in MDA

    Get PDF
    In a Model Driven Architecture (MDA) software development process, models are\ud repeatedly transformed to other models in order to finally achieve a set of models with enough details to implement a system. Generally, there are multiple ways to transform one model into another model. Alternative target models differ in their quality properties and the selection of a particular model is determined on the basis of specific requirements. Software engineers must be able to identify, compare and select the appropriate transformations within the given set of requirements. The current transformation languages used for describing and executing model transformations only provide means to specify the transformations but do not help to identify and select from the alternative transformations. In this paper we propose a process and a set of techniques for constructing a transformation space for a given transformation problem. The process uses a source model, its meta-model and the meta-model of the target as input and generates a transformation space. Every element in that space represents a transformation that produces a result that is an instance of the target meta-model. The requirements that must be fulfilled by the result are captured and represented in a quality model. We explain our approach using an illustrative example for transforming a platform independent model expressed in UML into platform specific models that represent XML schemas. A particular quality model of extensibility is presented in the paper

    Semantics of trace relations in requirements models for consistency checking and inferencing

    Get PDF
    Requirements traceability is the ability to relate requirements back to stakeholders and forward to corresponding design artifacts, code, and test cases. Although considerable research has been devoted to relating requirements in both forward and backward directions, less attention has been paid to relating requirements with other requirements. Relations between requirements influence a number of activities during software development such as consistency checking and change management. In most approaches and tools, there is a lack of precise definition of requirements relations. In this respect, deficient results may be produced. In this paper, we aim at formal definitions of the relation types in order to enable reasoning about requirements relations. We give a requirements metamodel with commonly used relation types. The semantics of the relations is provided with a formalization in first-order logic. We use the formalization for consistency checking of relations and for inferring new relations. A tool has been built to support both reasoning activities. We illustrate our approach in an example which shows that the formal semantics of relation types enables new relations to be inferred and contradicting relations in requirements documents to be determined. The application of requirements reasoning based on formal semantics resolves many of the deficiencies observed in other approaches. Our tool supports better understanding of dependencies between requirements

    Change Impact Analysis for SysML Requirements Models based on Semantics of Trace Relations

    Get PDF
    Change impact analysis is one of the applications of requirements traceability in software engineering community. In this paper, we focus on requirements and requirements relations from traceability perspective. We provide formal definitions of the requirements relations in SysML for change impact analysis. Our approach aims at keeping the model synchronized with what stakeholders want to be modeled, and possibly implemented as well, which we called as the domain. The differences between the domain and model are defined as external inconsistencies. The inconsistencies are propagated for the whole model by using the formalization of relations, and mapped to proposed model changes. We provide tool support which is a plug-in of the commercial visual software modeler BluePrint

    Spin transport in graphene nanostructures

    Full text link
    Graphene is an interesting material for spintronics, showing long spin relaxation lengths even at room temperature. For future spintronic devices it is important to understand the behavior of the spins and the limitations for spin transport in structures where the dimensions are smaller than the spin relaxation length. However, the study of spin injection and transport in graphene nanostructures is highly unexplored. Here we study the spin injection and relaxation in nanostructured graphene with dimensions smaller than the spin relaxation length. For graphene nanoislands, where the edge length to area ratio is much higher than for standard devices, we show that enhanced spin-flip processes at the edges do not seem to play a major role in the spin relaxation. On the other hand, contact induced spin relaxation has a much more dramatic effect for these low dimensional structures. By studying the nonlocal spin transport through a graphene quantum dot we observe that the obtained values for spin relaxation are dominated by the connecting graphene islands and not by the quantum dot itself. Using a simple model we argue that future nonlocal Hanle precession measurements can obtain a more significant value for the spin relaxation time for the quantum dot by using high spin polarization contacts in combination with low tunneling rates

    Experimental Evaluation of a Tool for Change Impact Prediction in Requirements Models: Design, Results and Lessons Learned

    Get PDF
    There are commercial tools like IBM Rational RequisitePro and DOORS that support semi-automatic change impact analysis for requirements. These tools capture the requirements relations and allow tracing the paths they form. In most of these tools, relation types do not say anything about the meaning of the relations except the direction. When a change is introduced to a requirement, the requirements engineer analyzes the impact of the change in related requirements. In case semantic information is missing to determine precisely how requirements are related to each other, the requirements engineer generally has to assume the worst case dependencies based on the available syntactic information only. We developed a tool that uses formal semantics of requirements relations to support change impact analysis and prediction in requirements models. The tool TRIC (Tool for Requirements Inferencing and Consistency checking) works on models that explicitly represent requirements and the relations among them with their formal semantics. In this paper we report on the evaluation of how TRIC improves the quality of change impact predictions. A quasiexperiment is systematically designed and executed to empirically validate the impact of TRIC. We conduct the quasi-experiment with 21 master’s degree students predicting change impact for five change scenarios in a real software requirements specification. The participants are assigned with Microsoft Excel, IBM RequisitePro or TRIC to perform change impact prediction for the change scenarios. It is hypothesized that using TRIC would positively impact the quality of change impact predictions. Two formal hypotheses are developed. As a result of the experiment, we are not able to reject the null hypotheses, and thus we are not able to show experimentally the effectiveness of our tool. In the paper we discuss reasons for the failure to reject the null hypotheses in the experiment

    The environmental benefits and challenges of a composite car with structural battery materials

    Get PDF
    One way to reduce the environmental impact of an electric vehicle is to reduce the vehicle’s mass. This can be done by substitution of conventional materials such as steel, aluminium, and plastics with carbon fibre composites, or possibly even with structural battery composite materials. In the latter case, another consequence is that the size of the vehicle battery is reduced as the structural battery composite not only provides structural integrity, but also stores energy. This study assesses the change in life cycle environmental impacts related to transitioning from a conventional battery electric vehicle to a vehicle with components made from either carbon fibre composites or structural battery composites, with the aim of identifying environmental challenges and opportunities for cars with a high share of composite materials. Results show that a transition to carbon fibre composites and structural battery composite materials today would (in most cases) increase the total environmental impact due to the energy intensive materials production processes. The two major contributors to the environmental impacts for the structural battery composite materials are energy intensive structural battery material manufacturing process and carbon fibre production process, both of which can be expected to decrease their energy consumption as the technology maturity level increases and other production and manufacturing processes are developed. For future assessments, more effort needs to be put on collecting primary data for large-scale structural battery composites production and on assessing different technology development routes

    5GNOW: Challenging the LTE Design Paradigms of Orthogonality and Synchronicity

    Full text link
    LTE and LTE-Advanced have been optimized to deliver high bandwidth pipes to wireless users. The transport mechanisms have been tailored to maximize single cell performance by enforcing strict synchronism and orthogonality within a single cell and within a single contiguous frequency band. Various emerging trends reveal major shortcomings of those design criteria: 1) The fraction of machine-type-communications (MTC) is growing fast. Transmissions of this kind are suffering from the bulky procedures necessary to ensure strict synchronism. 2) Collaborative schemes have been introduced to boost capacity and coverage (CoMP), and wireless networks are becoming more and more heterogeneous following the non-uniform distribution of users. Tremendous efforts must be spent to collect the gains and to manage such systems under the premise of strict synchronism and orthogonality. 3) The advent of the Digital Agenda and the introduction of carrier aggregation are forcing the transmission systems to deal with fragmented spectrum. 5GNOW is an European research project supported by the European Commission within FP7 ICT Call 8. It will question the design targets of LTE and LTE-Advanced having these shortcomings in mind and the obedience to strict synchronism and orthogonality will be challenged. It will develop new PHY and MAC layer concepts being better suited to meet the upcoming needs with respect to service variety and heterogeneous transmission setups. Wireless transmission networks following the outcomes of 5GNOW will be better suited to meet the manifoldness of services, device classes and transmission setups present in envisioned future scenarios like smart cities. The integration of systems relying heavily on MTC into the communication network will be eased. The per-user experience will be more uniform and satisfying. To ensure this 5GNOW will contribute to upcoming 5G standardization.Comment: Submitted to Workshop on Mobile and Wireless Communication Systems for 2020 and beyond (at IEEE VTC 2013, Spring

    Seasonal metabolism and carbon export potential of a key coastal habitat : The perennial canopy-forming macroalga Fucus vesiculosus

    Get PDF
    The important role of macroalgal canopies in the oceanic carbon (C) cycle is increasingly being recognized, but direct assessments of community productivity remain scarce. We conducted a seasonal study on a sublittoral Baltic Sea canopy of the brown alga Fucus vesiculosus, a prominent species in temperate and Arctic waters. We investigated community production on hourly, daily, and seasonal timescales. Aquatic eddy covariance (AEC) oxygen flux measurements integrated ~ 40 m2 of the seabed surface area and documented considerable oxygen production by the canopy year‐round. High net oxygen production rates of up to 35 ± 9 mmol m−2 h−1 were measured under peak irradiance of ~ 1200 Όmol photosynthetically active radiation (PAR) m−2 s−1 in summer. However, high rates > 15 mmol m−2 h−1 were also measured in late winter (March) under low light intensities < 250 Όmol PAR m−2 s−1 and water temperatures of ~ 1°C. In some cases, hourly AEC fluxes documented an apparent release of oxygen by the canopy under dark conditions, which may be due to gas storage dynamics within internal air spaces of F. vesiculosus. Daily net ecosystem metabolism (NEM) was positive (net autotrophic) in all but one of the five measurement campaigns (December). A simple regression model predicted a net autotrophic canopy for two‐thirds of the year, and annual canopy NEM amounted to 25 mol O2 m−2 yr−1, approximately six‐fold higher than net phytoplankton production. Canopy C export was ~ 0.3 kg C m−2 yr−1, comparable to canopy standing biomass in summer. Macroalgal canopies thus represent regions of intensified C assimilation and export in coastal waters.Peer reviewe

    Sharpness of the phase transition and exponential decay of the subcritical cluster size for percolation on quasi-transitive graphs

    Full text link
    We study homogeneous, independent percolation on general quasi-transitive graphs. We prove that in the disorder regime where all clusters are finite almost surely, in fact the expectation of the cluster size is finite. This extends a well-known theorem by Menshikov and Aizenman & Barsky to all quasi-transitive graphs. Moreover we deduce that in this disorder regime the cluster size distribution decays exponentially, extending a result of Aizenman & Newman. Our results apply to both edge and site percolation, as well as long range (edge) percolation. The proof is based on a modification of the Aizenman & Barsky method.Comment: Latex 2e; 25 pages (a4wide); small editorial corrections; one reference adde
    • 

    corecore