4 research outputs found

    Synthesis of Dimeric ADP-Ribose and Its Structure with Human Poly(ADP-ribose) Glycohydrolase

    No full text
    Poly­(ADP-ribosyl)­ation is a common post-translational modification that mediates a wide variety of cellular processes including DNA damage repair, chromatin regulation, transcription, and apoptosis. The difficulty associated with accessing poly­(ADP-ribose) (PAR) in a homogeneous form has been an impediment to understanding the interactions of PAR with poly­(ADP-ribose) glycohydrolase (PARG) and other binding proteins. Here we describe the chemical synthesis of the ADP-ribose dimer, and we use this compound to obtain the first human PARG substrate-enzyme cocrystal structure. Chemical synthesis of PAR is an attractive alternative to traditional enzymatic synthesis and fractionation, allowing access to products such as dimeric ADP-ribose, which has been detected but never isolated from natural sources. Additionally, we describe the synthesis of an alkynylated dimer and demonstrate that this compound can be used to synthesize PAR probes including biotin and fluorophore-labeled compounds. The fluorescently labeled ADP-ribose dimer was then utilized in a general fluorescence polarization-based PAR–protein binding assay. Finally, we use intermediates of our synthesis to access various PAR fragments, and evaluation of these compounds as substrates for PARG reveals the minimal features for substrate recognition and enzymatic cleavage. Homogeneous PAR oligomers and unnatural variants produced from chemical synthesis will allow for further detailed structural and biochemical studies on the interaction of PAR with its many protein binding partners

    Synthetic α- and β‑Ser-ADP-ribosylated Peptides Reveal α‑Ser-ADPr as the Native Epimer

    No full text
    A solid-phase methodology to synthesize oligopeptides, specifically incorporating serine residues linked to ADP-ribose (ADPr), is presented. Through the synthesis of both α- and β-anomers of the phosphoribosylated Fmoc-Ser building block and their usage in our modified solid-phase peptide synthesis protocol, both α- and β-ADPr peptides from a naturally Ser-ADPr containing H2B sequence were obtained. With these, and by digestion studies using the human glycohydrolase, ARH3 (hARH3), compelling evidence is obtained that the α-Ser-ADPr linkage comprises the naturally occurring configuration

    Four of a Kind: A Complete Collection of ADP-Ribosylated Histidine Isosteres Using Cu(I)- and Ru(II)-Catalyzed Click Chemistry

    No full text
    Adenosine diphosphate ribosylation (ADP-ribosylation) is a crucial post-translational modification involved in important regulatory mechanisms of numerous cellular pathways including histone maintenance and DNA damage repair. To study this modification, well-defined ADP-ribosylated peptides, proteins, and close analogues thereof have been invaluable tools. Recently, proteomics studies have revealed histidine residues to be ADP-ribosylated. We describe here the synthesis of a complete set of triazole-isosteres of ADP-ribosylated histidine to serve as probes for ADP-ribosylating biomachinery. By exploiting Cu(I)- and Ru(II)-catalyzed click chemistry between a propargylglycine building block and an α- or β-configured azidoribose, we have successfully assembled the α- and β-configured 1,4- and 1,5-triazoles, mimicking N(τ)- and N(π)-ADP-ribosylated histidine, respectively. The ribosylated building blocks could be incorporated into a peptide sequence using standard solid-phase peptide synthesis and transformed on resin into the ADP-ribosylated fragments to provide a total of four ADP-ribosyl triazole conjugates, which were evaluated for their chemical and enzymatic stability. The 1,5-triazole analogues mimicking the N(π)-substituted histidines proved susceptible to base-induced epimerization and the ADP-ribosyl α-1,5-triazole linkage could be cleaved by the (ADP-ribosyl)hydrolase ARH3

    Discovery of a Selective Allosteric Inhibitor Targeting Macrodomain 2 of Polyadenosine-Diphosphate-Ribose Polymerase 14

    No full text
    Macrodomains are conserved protein interaction modules that can be found in all domains of life including in certain viruses. Macrodomains mediate recognition of sequence motifs harboring adenosine diphosphate ribose (ADPR) modifications, thereby regulating a variety of cellular processes. Due to their role in cancer or viral pathogenesis, macrodomains have emerged as potential therapeutic targets, but the unavailability of small molecule inhibitors has hampered target validation studies so far. Here, we describe an efficient screening strategy for identification of small molecule inhibitors that displace ADPR from macrodomains. We report the discovery and characterization of a macrodomain inhibitor, GeA-69, selectively targeting macrodomain 2 (MD2) of PARP14 with low micromolar affinity. Co-crystallization of a GeA-69 analogue with PARP14 MD2 revealed an allosteric binding mechanism explaining its selectivity over other human macrodomains. We show that GeA-69 engages PARP14 MD2 in intact cells and prevents its localization to sites of DNA damage
    corecore