8 research outputs found

    Lactobacillus rhamnosus GG in Experimental Oral Biofilms Exposed to Different Carbohydrate Sources

    Get PDF
    Probiotic administration may favour caries prevention, as recent research has shown. This in vitro study aimed to investigate the growth of Lactobacillus rhamnosus GG (LGG) in experimental biofilms exposed to various carbohydrates, and also to assess its cariogenic potential. Multispecies experimental oral biofilms with or without LGG were grown with a sole-carbohydrate source (fructose/glucose/lactose/sorbitol/sucrose). The viable cells of LGG and structure of the biofilms were examined after 64.5 h of incubation, and pH values of spent media were measured at 16.5, 40.5, and 64.5 h. Fermentation profiles of LGG in biofilm media were assessed with study carbohydrate as the sole energy source. Our results showed that LGG reached higher viable cell numbers with glucose and sucrose in 64.5-h multispecies experimental oral biofilms compared to other carbohydrates. When LGG was incorporated in biofilms, no distinct pH changes at any time points were observed under any of the carbohydrates used; the pH values of spent media at each time point were lower when lactose was used, compared to other carbohydrates. The fermentation profiles of LGG in biofilm media were similar to its growth in MRS (no obvious growth with lactose or sucrose). In conclusion, LGG in our in vitro multispecies experimental oral biofilms was capable of surviving and growing well in each carbohydrate source. LGG might not have harmful effects on dental hard tissues. Another finding from our study was that the lowest pH values were observed in the presence of lactose, and the thickest biofilms were in sucrose. (C) 2018 S. Karger AG, BaselPeer reviewe

    Mouthwash Effects on LGG-Integrated Experimental Oral Biofilms

    Get PDF
    In order to investigate the effects of mouthwashes on oral biofilms with probiotics, we compared in biofilms the susceptibility to mouthwashes of probiotic Lactobacillus rhamnosus GG (LGG) and oral pathogens Streptococcus mutans, Streptococcus sanguinis, and Candida albicans. We also evaluated these pathogens’ susceptibility to the mouthwashes and their recovery after mouthwash-rinsing in biofilms with/without LGG. First, 1-day-/3-day-old LGG-integrated multi-species biofilms were exposed for 1 min to mouthwashes containing chlorhexidine, essential oils, or amine fluoride/stannous fluoride. Cells were plate-counted and relative survival rates (RSRs) of LGG and pathogens calculated. Second, 1-day-/3-day-old multispecies biofilms with and without LGG were exposed for 1 min to mouthwashes; cells were plate-counted and the pathogens’ RSRs were calculated. Third, 1-day-old biofilms were treated for 1 min with mouthwashes. Cells were plate-counted immediately and after 2-day cultivation. Recovery rates of pathogens were calculated and compared between biofilms with/without LGG. Live/Dead® staining served for structural analyses. Our results showed that RSRs of LGG were insignificantly smaller than those of pathogens in both 1-day and 3-day biofilms. No significant differences appeared in pathogens’ RSRs and recovery rates after treatment between biofilms with/without LGG. To conclude, biofilm LGG was susceptible to the mouthwashes; but biofilm LGG altered neither the mouthwash effects on oral pathogens nor affected their recovery

    Interactions between Lactobacillus rhamnosus GG and oral micro-organisms in an in vitro biofilm model

    Get PDF
    Background: Probiotics have shown favourable properties in maintaining oral health. By interacting with oral microbial communities, these species could contribute to healthier microbial equilibrium. This study aimed to investigate in vitro the ability of probiotic Lactobacillus rhamnosus GG (L.GG) to integrate in oral biofilm and affect its species composition. Five oral strains, Streptococcus mutans, Streptococcus sanguinis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Candida albicans were involved. The group setup included 6 mono-species groups, 3 dual-species groups (L.GG + S. mutans/S. sanguinis/C. albicans), and 4 multi-species groups (4/5 species and 4/5 species + L.GG, 4 species were all the tested strains except S. mutans). Cell suspensions of six strains were pooled according to the group setup. Biofilms were grown on saliva-coated hydroxyapatite (HA) discs at 37 degrees C in anaerobic conditions for 64.5 h. Biofilm medium was added and refreshed at 0, 16.5, and 40.5 h. The pH of spent media was measured. Viable cells of the 16.5 h and 64.5 h biofilms were counted. 64.5 h biofilms were stained and scanned with confocal laser scanning microscopy. Results: Our results showed that L.GG and S. mutans demonstrated stronger adhesion ability than the other strains to saliva-coated HA discs. L.GG, C. albicans, S. mutans and F. nucleatum, with poor ability to grow in mono-species biofilms demonstrated better abilities of adhesion and reproduction in dual-and/or multi-species biofilms. L.GG slightly suppressed the growth of C. albicans in all groups, markedly weakened the growth of S. sanguinis and F. nucleatum in 4sp + L.GG group, and slightly reduced the adhesion of S. mutans in L.GG+ S. mutans group. Conclusions: To conclude, in this in vitro model L.GG successfully integrated in all oral biofilms, and reduced the counts of S. sanguinis and C. albicans and lowered the biofilm-forming ability of F. nucleatum, but only slightly reduced the adhesion of S. mutans. C. albicans significantly promoted the growth of L.GG.Peer reviewe

    Mouthwash Effects on LGG-Integrated Experimental Oral Biofilms

    Get PDF
    In order to investigate the effects of mouthwashes on oral biofilms with probiotics, we compared in biofilms the susceptibility to mouthwashes of probiotic Lactobacillus rhamnosus GG (LGG) and oral pathogens Streptococcus mutans, Streptococcus sanguinis, and Candida albicans. We also evaluated these pathogens’ susceptibility to the mouthwashes and their recovery after mouthwash-rinsing in biofilms with/without LGG. First, 1-day-/3-day-old LGG-integrated multi-species biofilms were exposed for 1 min to mouthwashes containing chlorhexidine, essential oils, or amine fluoride/stannous fluoride. Cells were plate-counted and relative survival rates (RSRs) of LGG and pathogens calculated. Second, 1-day-/3-day-old multispecies biofilms with and without LGG were exposed for 1 min to mouthwashes; cells were plate-counted and the pathogens’ RSRs were calculated. Third, 1-day-old biofilms were treated for 1 min with mouthwashes. Cells were plate-counted immediately and after 2-day cultivation. Recovery rates of pathogens were calculated and compared between biofilms with/without LGG. Live/Dead® staining served for structural analyses. Our results showed that RSRs of LGG were insignificantly smaller than those of pathogens in both 1-day and 3-day biofilms. No significant differences appeared in pathogens’ RSRs and recovery rates after treatment between biofilms with/without LGG. To conclude, biofilm LGG was susceptible to the mouthwashes; but biofilm LGG altered neither the mouthwash effects on oral pathogens nor affected their recovery

    Probiotics: Evidence of Oral Health Implications

    No full text
    The prevalence of common oral diseases, such as dental caries, periodontal diseases and oral candidiasis remains high in the general population. Various preventive strategies have been proposed and included in national health programs promoting oral health. Interest in probiotics in light of oral health has gradually evolved as attractive means in prevention of oral infectious diseases. The aim of the present review is to outline the current evidence on the role of probiotic species on oral health parameters and their beneficial role in contributing to healthier oral environment
    corecore